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Abstract. Consider an economy in which agents face income risk but interact in a stochastic
financial network. We define the financial centrality of an agent as the ex-ante marginal social value
of injecting an infinitesimal amount of liquidity to that agent. We show financially central agents
are not only those who are linked often, but are linked when the realized network is fragmented
(has fewer links), are linked when income risk is high, when income shocks are positively correlated,
when attitudes toward risk are more sensitive in the aggregate, and when there are tail risks. We
apply our framework to financial markets with participation shocks, to supply chains subject to
disruptions, and to village risk sharing with heterogeneous and uneven networks. We allow for
endogenous participation. Financial centrality is the value of a personalized security which pays off
over states in which a named trader participates in market exchanges. Evidence from Thai villages,
in which the Pareto weights are determined from bargaining solutions to the risk sharing problem, is
consistent with the theory. We conclude with normative, policy implications for targeting liquidity
injections to key traders in markets and to links in the supply chains where money would be most
useful.
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1. Introduction

Delirium: You use that word so much. Responsibilities. Do you ever think about
what that means?
Dream: Well, I use it to refer that area of existence over which I exert a certain
amount of ... influence.
Delirium: It’s more than that. The things we do make echoes.

–Neil Gaiman, The Sandman, Vol. 9: The Kindly Ones

Networks are essential to study in order to understand financial markets in a wide variety of con-
texts, including but not limited to banking systems, over-the-counter bond markets, supply chains,
financial traders, and even informal financial relationships to abate risk in villages (Bramoulle and
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Kranton, 2007; Bloch, Genicot, and Ray, 2008; Ambrus, Mobius, and Szeidl, 2010; Jackson, Barra-
quer, and Tan, 2012; Ambrus, Gao, and Milán, 2017; Ambrus and Elliott, 2018). To that end, it is
essential to understand which agents are of particular value in the network by both (a) developing
a positive description of how network shape and position relates to function of the market and
(b) understanding normative implications such as how a policymaker may want to intervene—e.g.,
inject liquidity—in the market.

In its most general form, a stochastic financial network is nothing more than subsets of agents
interacting, potentially randomly driven by external forces or choice, and this pattern is called
a network. Note that a fixed network is a special case. A broad literature, spanning numerous
disciplines and contexts, studies various notions of centrality in networks (Erdos and Renyi, 1959;
Friedkin and Johnsen, 1997; Bollobas, 1998; DeMarzo et al., 2003; Durrett, 2007; Jackson, 2008;
Golub and Jackson, 2010). These are often, though certainly not always, motivated by models of
contagion developed, which while important in some contexts, are not appropriate for our line of
inquiry.

Therefore, we study—in a general stochastic network of transactions—which individuals are the
most financially central in the sense of being valued through a policymaker’s intervention, how this
centrality relates to network structure and economic fundamentals, what economic foundations
give rise to such a pattern of network centrality, and what this says about normative policy (e.g.,
liquidity injections).

In Section 3 we define our notion of financial centrality as follows. The centralized planning
problem that delivers Pareto optimal allocations is the problem of maximizing a Pareto weighted
sum of ex-ante expected utilities of agents subject to shock contingent resource and to participation
constraints. So, the financial centrality of an agent i is then the increment in ex-ante social value, a
marginal increase in the objective function of the planner, derived from injecting an infinitesimally
small amount of liquidity to i ex-ante—that is,

FCi := Marginal Social Value of giving ε > 0 to i whenever she can trade.

The first order conditions with respect to this liquidity ε, when ε is driven to zero, are then the value
of liquidity and the correct measure of financial centrality of each trader i. It is the expectation
of the joint product of the value of liquidity as the shadow price in the resource constraint and
the participation indicator of that player i. This is a sensible definition and note that this is
analogous to a setting where one asks to which node should a policymaker provide a marginal unit
of information in order to get the most wide-spread diffusion, but adapted to the financial context.

An important consideration that emerges from our perspective is whether the liquidity injection
itself changes the network structure. So, we introduce the concept of being inert or responsive
to infinitesimal liquidity injection. When the distribution of participation in exchange does not
respond to a liquidity injection, which can happen both in exogenous but also endogenous partic-
ipation models, we say it is inert. When the distribution of interaction itself changes, we say it is
responsive. We study both.

In Section 4 we present the main results of our analysis. First, taking our perspective on financial
centrality, we characterize the financial centrality of agents in terms of the structure of the stochastic
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network and economic fundamentals. The result is intuitive, but distinct in an important way, from
standard analyses of network centrality in financial market. Typical analyses follow an intuition
that agents who are highly linked, either directly or indirectly, are very central: shocks propagate
further. Our results highlights an important other feature which can dominate the analysis. Central
agents are those who are not simply ever-present. Rather, they are those who have numerous links
with other agents who themselves have few alternative transaction partners. That is, agents are
more central if they link with less, rather than more, central agents and are present exactly when
markets are thin. When there is heterogeneity among agents—for instance they vary in variability
of shocks, or agents who are connected have correlated shocks— central agents are those who
are linked to sets of individuals with variable or correlated financials (e.g., similar occupations,
similar portfolio holdings). This characterization of financial centrality stands in stark contrast to
typical ideas of central nodes in the financial network and also contrasts with more broad notions
of centralities in many disciplines. Those perspectives say you are more central if those around you
are more central. Our result proves exactly the opposite is true: you are particularly valuable if
you link with the weak.

Second, we then consider foundations for centrality. From the perspective of an Arrow Debreu
economy, we show that financial centrality is the price of a personalized debt asset that implements
the Walrasian equilibrium. We also consider bargaining foundations for centrality. We show that
when agents bargain to establish rules as to how value is split in the network, financial centrality
precisely determines how these shares are determined. Under Nash bargaining, there is a positive
linear relationship between the Pareto weight of an agent in the planner’s problem and her financial
centrality measure. The analysis suggests a unique pattern to look for in the data, not predicted
by other standard models: agents who transact with others who themselves have fewer transaction
partners, as well as transaction partners who have clustered shocks and more variable shocks,
will have higher centrality and therefore receive greater average consumption in a risk-sharing
environment. Risk-sharing data from Thai villages are consistent with these bargaining foundations.

Third, our results are generalizable to settings in which agents can endogenously choose to enter
the market—the network structure can respond to incentives as well as the liquidity injection.

Fourth, we generalize the model to include larger discrete liquidity injections, turn to normative
policy considerations, and confirm the earlier measures of valuable traders should be used to direct
these liquidity injections. Thus, just as the earlier notions of financial centrality consistent with ex-
post shocks and contagion have influenced the way policy makers think about prudential regulation,
here our ex-ante measure of financial centrality could be used to think about monetary policy. We
are reminded of Jeremy Stein’s 2013 discussion1 of how central bank liquidity should be priced
ex-ante in an auction—a price which in turn could serve as a guide to policy makers concerning
market conditions, a feedback loop to policy. Our contribution would be a measure of which traders
or institutions have a key value in channeling the incremental liquidity to the market.

Section 5 is a conclusion. All proofs unless otherwise noted are contained in the appendix. Fur-
ther, the appendix contains considerable generalizations of our analysis. Specifically, we (a) provide
a generalization to markets with heterogenous fundamentals (e.g., Pareto weights, risk-preferences,

1https://www.federalreserve.gov/newsevents/speech/stein20130419a.htm
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dependent endowment processes); (b) provide generalized foundations for market participation; (c)
extend the analysis to multiple segmented markets; (d) analyze several contrasting examples of
endogenous participation.

2. Related Literature

Our work speaks to various seemingly distinct branches of the literature: risk sharing in networks,
financial market risk, and supply chain disruptions. We provide a unifying framework and, to the
best of our knowledge, unique contributions.

One branch of the literature studies risk-sharing networks (see e.g., Bramoulle and Kranton
(2007); Bloch, Genicot, and Ray (2008); Ambrus, Mobius, and Szeidl (2010); Jackson, Barraquer,
and Tan (2012); Ambrus, Gao, and Milán (2017); Ambrus and Elliott (2018)) from a variety of
angles: e.g., how the shape of an exogenous non-random network affects the extent of insurance
sustained, endogenous formation of a non-random network capable of sustaining favors or risk-
sharing, and so on. Perhaps the closest works are Ambrus et al. (2017) and Ambrus and Elliott
(2018). The former studies risk-sharing where transfers among pairs of agents can only depend on
income realizations of agents who are both linked in a pre-existing network. Here central agents
tend to be well-connected in a manner akin, though not identical, to Bonacich centrality (and
other eigenvector-like centralities). The focus of the latter is particularly on link investments in
a bargaining game whereby once the network is constructed, all connected components perfectly
share risk, on the efficiency, or lack thereof, in terms of over or under-investment in links. Our
work distinctly focuses on what makes individuals central, in the sense of the planner’s objective
function when considering a liquidity injection, when participation is exogenous or endogenous.

A second branch focuses on financial markets and liquidity risk. For instance, in Duffie et al.
(2005) there is a single underlying consumption good and two types of assets, a safe liquid asset
such as a bank account which can be traded instantaneously, and a consol that requires finding a
trading parter, in a search environment. Traders buy and sell these assets among themselves and
with market makers. Search frictions make the markets imperfect. For us here in this paper, we
feature risk averse traders who would like to hedge the income risk from the portfolio they hold, but
who suffer from market participation risk. Relatedly, Longstaff (2004) studies the value of liquidity
and the distinction between on-the-run vs off-the run treasuries. Liquidity can vary across assets.
However we do shift the emphasis and language a bit, from limited asset trade, in which some assets
provide liquidity in disruptions, to limited market participation, with a focus on traders, specifically
which key traders can provide liquidity to those who remain. Further, Weill (2007) studies the role
of market makers in providing liquidity when there is large and temporary pressure as well as
order execution delays. He refers to market makers as leaning against the wind. The paper studies
optimal dynamic liquidity provision in a theoretical market. In our paper, key traders look like
market makers in the sense that they provide liquidity to a subset of traders. However, unlike Weill
(2007) we focus on quantifying the value of such market makers and potential heterogeneity among
them. Like Weill (2007) we also move beyond marginal movements in liquidity and study optimal
central bank provision liquidity, which should identify key traders as those to whom liquidity should
be targeted ex ante. Lagos and Zhang (2020) also feature the role of Central Banks in the provision
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of liquidity in wholesale markets. A monetary authority injects or withdraws money via lump-sum
transfers or taxes to investors in the second sub-period, in the Walrasian market. We adopt an
extreme version of this; liquidity can only be injected via traders carrying it into markets and not
when agents are in autarky.

A third branch focuses on contagion in financial networks. Much of this literature focuses on
a kind of non-linearity, whereby positive and negative shocks propagate asymmetrically through
a financial network. For instance, in the presence of solvency constraints, a positive shock may
leave the network intact whereas a large enough negative shock may have a large adverse impact
on welfare. Intriguingly, agents may vary in whether they are central for positive versus negative
shocks and further, the optimal network structure may vary in the size of the shock (e.g., for small
shocks the complete graph but for large shocks the empty graph). The theory is developed in,
among others, Allen and Gale (2000), Freixas et al. (2000) and Eisenberg and Noe (2001), Gai and
Kapadia (2010), Blume, Easley, Kleinberg, Kleinberg, and Tardos (2011), Battiston et al. (2012),
Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012), Elliott, Golub, and Jackson (2014),
Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015), Farboodi (2015), Babus (2016), Elliott and Hazell
(2016), Cabrales, Gottardi, and Vega-Redondo (2017), and Farboodi et al. (2017). Empirical work
includes Upper and Worms (2004), Bech and Atalay (2010), Boss et al. (2004), Cohen-Cole et al.
(2013), Craig and Von Peter (2014), Cont et al. (2013), Langfield et al. (2014), Jaramillo (2012), and
others. See Allen and Babus (2009), Summer (2013), and Acemoglu, Ozdaglar, and Tahbaz-Salehi
(2016) for surveys. Our notion of centrality is different.

3. Model

3.1. Setup. We lay out the set-up and the planner problem emphasizing the basics in the simplest
possible terms and notation, to feature stochastic networks generally. In the Online Appendix B,
we show examples of the general set up with interpretations of the notation: financial markets with
limited participation and supply chain economies with production shocks and limited networks.

Consider an economy with a set I = {1, ..., n} of agents, one good, and one period. This
can easily be generalized to multiple goods and periods. Agents face idiosyncratic income risk,
where y = (y1, ..., yn) denotes the vector of income realizations for all agents in the economy,
which we assume are drawn from some distribution F (y). Let µi = E (yi) denote the mean,
σ2
i = E (yi − µi)2 the variance, and Σ the variance-covariance matrix of y. Agents have expected

utility preferences, with utility function ui (ci), which we assume to be strictly increasing, strictly
concave, and sufficiently smooth (i.e., all derivatives exist). We will also assume that u′′′i (c) > 0
which means that agents exhibit prudence.

The stochastic financial network we study is a probability distribution over all elements of the
power set of n agents (Chandrasekhar and Jackson, 2016). Formally, let ζ ∈ {0, 1}n be the partic-
ipation vector (which formally we can model as a shock to the consumption set of agents). This is
general and includes both exogenous participation as well as a wide class of endogenous participa-
tion models, described below. Here if ζi = 0 then ci = yi. However, if ζi = 1, then consumption
and income do not have to coincide as agents can make transfers in such states. The relevant
state, in the Arrow and Debreu sense of enumerating all shocks and indexing the commodity space
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by them, is then s = (y, ζ) ∈ S := Rn+ × {0, 1}
n. A feasible consumption allocation is a function

c (s) = (ci (s))i∈I such that, for every s = (y, ζ), ci (s) = yi whenever ζi = 0 and it is resource
feasible: i.e.,

∑
i ζici ≤

∑
i ζiyi for all s.

State s is drawn from a probability distribution P (y, ζ) which is common knowledge among
agents, and we assume the support of the distribution, S, to be discrete for most proofs, for
expositional simplicity. This is a primitive of our baseline environment.

The timing of the realization of income and market shocks matters and will give rise to different
measures of centrality. The baseline assumption in most of the paper considers income and market
participation shocks as independent random variables. One can think about this as a case where
market participation, ζ, is assigned first and then, independent of this, income shocks y are drawn.
This may describe exogenous settings in which transaction opportunities arise, to first order, from
a set of pre-determined agents (e.g., relatives or individuals with whom trust has been established
over many years, or as in supply chains) and where shocks to availability, awareness, or costs further
affect participation. It also describes some endogenous settings more generally, described below.

Suppose the allocation can be determined as if there were a planner who tries to choose among
resource feasible allocations to maximize a linear welfare functional2, with Pareto weights vector
λ ∈ Rn+, effectively choosing c (s) to solve:

(3.1) V (λ) := max
(ci(·))i=1,...,n

Es

{
n∑
i=1

λiui [ci (s)]
}

subject to

(3.2)
n∑
i=1

ζici (s) ≤
n∑
i=1

ζiyi (s) for all (y, ζ)

and

(3.3) ci (s) = yi for all s = (y, ζ) : ζi = 0.

We therefore consider a setting where a set of n agents who may have heterogeneous preferences,
heterogeneous income processes, endogenous participation decisions, and for whom the planner has
heterogeneous Pareto weights, are assigned consumption allocations that maximize the planner’s
objective function, as a way of generating and characterizing constrained Pareto optimal allocations.
In Online Appendix F we explore a generalization with several simultaneous segmented markets,
and show how to map all of the results of this special model to the general case. We focus on the
single market case for expositional simplicity. Below we also discuss foundations for the Pareto
weights λ.

It should be clear that our environment covers numerous applications such as an economy with
liquid assets, production networks, income as portfolio returns, among others. Next we provide an
example to illustrate this with other examples in Online Appendix B.

Example 1: Economy with Liquid Assets. Consider an extension where agents face income
risk, and have investment opportunities. Namely, let ŝ ∈ S̃ denote the underlying aggregate state

2We also consider the case where the planner cannot choose c (·) (Online Appendix F.2)
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of nature. Agents have underlying income streams ei (s̃), and let e (s̃) = (e1 (s̃) , . . . , en (s̃)) ∈ Rn

endowment realizations for all agents in the economy. There is a tradable, consumable asset
available for purchase/sale or reallocation by the planner, with a gross return of 1, which we
refer to as a “liquid asset”. Thus here “market access” is not only the ability to trade with other
agents, but also access to an external market, where the liquid asset can be traded for consumption
goods. We regard this asset as providing liquidity, effectively a bank account with zero net interest.
With more than two states s, the asset market structure here is exogenously incomplete, allowing
some but not all transformation and smoothing of intertemporal consumption. Let Ai for agent i
be her endowment of liquid assets in the economy. Let ti (s̃) ∈ R be the ex-post consumption good
net transfers that the social planner chooses to smooth consumption risk. Consumption for each
agent is then ci (s̃) = ei (s̃) if ζi (s̃) = 0 and

(3.4) ci (s̃) = ei (s̃) +Ai + ti (s̃)

if ζi (s̃) = 1. Transfers need to net out among trading agents; i.e.
n∑
i=1

ζi (s̃) ti (s̃) = 0 for all s̃ ∈ S̃

To map this environment into the general, reduced form model, given the initial allocation of
liquid assets A, we define s =

(
yA (s̃) , ζ (s̃)

)
where

yAi (s) = ei (s) +Ai if ζi (s̃) = 1 and yA (s) = ei (s) otherwise.

3.2. Financial Centrality. We define our measure of financial centrality of an agent i as the
increment in value for the planner of providing liquidity to agent i whenever she can trade. The
liquidity injection corresponds to giving ε > 0 to agent i each time she is in the market, so

∀ (ζ, y) : ζi = 1 =⇒ y′i = yi + ε.

i.e., the injection is an increase in the expectation of yi conditional on the agent having market
access (ζi = 1). Let Vi,ε (λ) be the maximum value of program (3.1) given such an injection to
agent i.

Definition 3.1. We define financial centrality of agent i ∈ I as

FCi := ∂Vi,ε (λ)
∂ε

|ε=0.

So our measure of centrality measures the marginal social benefit of giving a small unit of extra
income to agent i every time i is in the market and trades with it as per contracts and markets.

One justification for this is as follows. From the planner’s perspective, the agents in the economy
can be thought of as assets, in the sense of Lucas Jr (1978). When a planner considers injecting
liquidity, the role an agent plays is to be available to trade: the agent only fulfills the role when she
is available of course. This corresponds precisely to the idea of an asset that pays only in certain
states—in this case being present. Consequently, the fundamental value of the asset corresponds
precisely to integrating over the marginal increments in social welfare, given by the equilibrium
pricing kernel, over all states where the asset pays (again, here being present).
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3.3. Inert and Responsive to Liquidity Injections. We say that an environment is inert to in-
finitesimal liquidity injection if P (s) is constant under changes in E (yi | ζi = 1), for all i ∈ I, y ∈ Y
and ζ : ζi = 1. This would be the case if the market formation process (either exogenously deter-
mined or endogenously determined) is completely independent from the income distribution, and
would have the feature that a marginal liquidity injection has no effect on the market participation
distribution. Consider an example wherein individuals decide whether or not to enter a market
knowing the set of others who have the opportunity to participate in this state of the world; par-
ticipation has some known fixed cost. In (the pure strategy maximal entry) equilibrium, all or no
such agents choose to participate and in the homogenous parameter case agents’ decisions purely
depend on the number of other agents who have the opportunity: there is a threshold participation
opportunity size above which all agents will participate. An infinitesimal liquidity injection clearly
cannot change this endogenous distribution of participation decisions and, further, if the equilib-
rium with maximal entry is inert to liquidity injections, then so is a mixed strategy equilibrium
with independent mixes.

Environments where the above property fails are models that are responsive to infinitesimal
liquidity injection. Note that all exogenous market participation models are inert. Endogenous
market participation environments may be inert or may be responsive, and this depends on the
details of the model. An example of such an environment (which we will study) is one where
agents have to decide whether to (costly) access the market or not, before observing income draws.
In this environment, agents draw fixed market participation costs ki ≥ 0 from some distribution
G (k1, . . . , kn) which has full support in an interval in Rn, and decide to access the market if the
expected utility of having market access (integrating over income draws and market participation
decisions of other agents) net of the trading cost ki exceeds the expected autarky value. In any
equilibrium, agents will have a cutoff cost such that they only access the market for low enough ki.
This model will typically display responsiveness to infinitesimal liquidity injection since the liquidity
injection would, in particular, increase the expected utility of for agent i from getting market access
(ζi = 1), therefore changing the equilibrium market participation distribution. In environments
where agents endogenously influence the income distribution (through costly production or by
choosing an investment portfolio) the liquidity injection can have effects on changing the income
distribution at the margin. We study an environment with endogenous investment decisions in
online Appendix H.

More formally, decompose P (s) = P (y) P (ζ | y). We want to understand how a liquidity injec-
tion may affect the probability of each original state. For this, we need to write a model, which will
give as a result the score of the state with respect to the liquidity injection εi. Formally, a model
will be a mapping εi → P (s | εi), with the associated score function (with respect to a marginal
injection of agent i) defined as

Si (s) := ∂ ln [P (s | εi)]
∂εi

|εi=0

which (if desired) can be decomposed into the score of the income distribution, and the score of
market participation (given income) simply as Si (s) = Si (ζ | y) + Si (y), where the former term
is the market participation effect and the latter term is the income effect. An environment will be
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inert when Si (s) = 0 almost surely. An important thing to note is that when ζ is independent of
y, this does not mean that the score turns to zero: but rather that it gets simplified to Si (s) =
Si (ζ) + Si (y).

4. Results

4.1. Financial Centrality and Network Structure. We begin by demonstrating that financial
centrality can be written as two terms composed of the inert and responsive components.

Proposition 4.1. Suppose the environment is responsive to infinitesimal liquidity injection, and
that c (·) solves program (3.1). Then financial centrality can be written as:

FCi := Es {ζiq (s)}︸ ︷︷ ︸
inert component

+Es

∑
i∈[n]

λiui (ci (s))× Si (s)

︸ ︷︷ ︸
responsive component

.

In order to explore this further, let us assume that we are in the simplest possible case where all
agents are identical, each have the same Pareto weight, and income is drawn i.i.d. Let nζ :=

∑
i ζi

be the market size at market ζ, and h (ζ) := Ey [q (y, ζ)]. We characterize financial centrality in
this environment.

Proposition 4.2. Suppose ui = u and λi = 1/n for all i, and income draws are independent and
identically distributed across agents. Then q (s) = u′ [y (s)] and ci (s) = ζiy (s) + (1− ζi) yi. More-
over, if u is analytic then we can approximate h (ζ) ≈ u′ (µ)

(
1 + γ σ

2

nζ

)
, where γ := (1/2)u′′′ (µ) /u′ (µ).

Therefore,

(4.1) FCi ∝ P (ζi = 1)×
[
1 + γσ2E

(
1
nζ
| ζi = 1

)]
..

An intuition is as follows. What matters here is the variance of mean income, which is the
relation between income volatility (σ2) and market size nζ , giving us the only relevant moment of
the distribution of ζ and income volatility σ2. This shows that centrality can be decomposed into
two pieces. Financial centrality is higher when (1) the agent has a higher probability of trading
(P (ζi = 1) ↑) and (2) the market size conditional on the agent entering is smaller. Finally, the
degree to which each of these matters can depend on the mean income, degree of risk aversion,
degree of prudence (convexity of marginal utility of consumption, which governs precautionary
savings), and variability of income (measured by the coefficient of variation).

We generalize this considerably in Proposition A.3.2 to allow for heterogenous preferences,
volatilies of income, correlations in income, and aggregate shocks. The robust implications of
this are as follows. First, again we see that agents who tend to participate when the trading room
is small are more financially central. Second, agents who tend to participate when those whom the
planner values more are more central. Third, those who participate when there is greater volatility
are more central. Fourth, agents are more central if the average agent in the market has a lower
endowment in expectation when the agent in question is in the market. Fifth, agents are more cen-
tral if the degree of risk aversion when the agent is in the market is higher. Overall, the notion of
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financial centrality captures a generalized notion of market thinness. The planner values the agents
precisely whom are able to provide transfers to others who need it when they are in particular dire
need. In doing so, the planner takes into account who will be in the room in equilibrium. Though
this is intuitive, it provides an economically relevant relationship between our fundamentals and a
notion of centrality.

Example 2: Market Formation; Trading with Neighbors. We consider a stylized example
of market formation where individuals are called to trade with their neighbors. We provide richer
examples in Online Appendix D. Imagine that when an agent i is called to trade in some state, he
invites all his kin and friends. That is, the entire neighborhood of agent i in the kin/relative network
participates.3 In such a case, the resulting stochastic financial network is simply a distribution over
all neighborhoods of agents j = 1, ..., n in the network with weights given by the probability that
j is called to be the market organizer.

In every period, a single node is chosen as a host and all of its neighbors are activated to trade.
Let g = (I, E) denote the network with E the set of edges and gij = 1 {ij ∈ E}. For simplicity
we consider an undirected, unweighted graph and assume each node has a self-loop (gii = 1). Let
di :=

∑
j gij denote the degree of node i and let Ni := {j ∈ I : gij = 1} denote the neighborhood

of i.
Market participation is drawn as follows. With probability zi = 1

n , each agent is selected to be
the host. Then ζi = 1 and also ζj = 1 {j ∈ Ni}. We can compute financial centrality as

FCi = 1
n

di + γσ2∑
j

gij
dj

 .
Agents who have larger neighborhoods in the kin/relative network are more financially central
(from the di term), but in particular holding that fixed agents that have neighbors who have
smaller neighborhoods are more financially central (from the 1

dj
term). The notion of financial

centrality derived from our model may be quite different from traditional notions of centrality, such
as degree, betweenness, eigenvector-like (e.g., Katz-Bonacich) centralities, among others. To see
the contrast, observe that rather than one’s centrality increasing in the degree of ones’ neighbors,
one’s centrality declines if ones’ neighbors have higher degree.

In Figures 4.1a and 4.1b, we compare two agents i and j in different parts of a large network (so
n is the same for both of them). Observe that agent j in Figure 4.1b is more central than the one
in Figure 4.1b, i, according to most commonly used centrality measures, since she can reach more
agents in the same number of steps (higher eigenvector centrality, for example). However, the agent
j is less financially central in the induced stochastic financial network than i, since (a) it has the
same probability of having market access, but (b) the markets she has access to are bigger (in the
first order stochastic dominance sense) to those that agent i reaches, and is hence less important.
This is because of the logic of consumption variance reduction: a dollar given to the agent i will
reduce consumption variance a lot more than agent j.

3To give an example for the case of endogenous participation, imagine this graph to be such that for every node
every neighborhood represents the set of individuals who have the opportunity to participate and in equilibrium this
neighborhood does attend the market. In such settings, it is without loss to proceed as if participation is exogenous.
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i

1 2

34

(a)

j

5 6

78

(b)

Figure 4.1. Two agents in a large network (not necessarily fully pictured), i and
j, in Panels (A) and (B) respectively. Many typical measures of centrality (e.g.,
eigenvector-like centralities) would treat j as being more central than i, ceteris
paribus, since they have the same degree and j’s neighbors’ degrees are higher. Our
notion of financial centrality ranks FCj < FCi.

In the case where ui (c) = −r−1
i exp (−ric) and y ∼ N (µ,Σ) we can obtain a closed form

expression for financial centrality; namely:

FCi = Eζ

{
ζi exp

(
−rζµζ

)
λζ exp

(
r2
ζ

2 ×
σ2
ζ

nζ

)}

where µζ := nζ
∑
i ζiµi and σ2

ζ := n−1
ζ

∑
ζiζjσiσj are, respectively, the average mean and variance

of income for the agents present at market ζ, rζ =
(
nζ
∑
ζir
−1
i

)−1
is the harmonic mean of income

at that market and λζ = exp
[
n−1
ζ

∑
ζi (rζ/ri) ln (λi)

]
is a geometric weighted average of the Pareto

weights of agents present at ζ, weighted by how risk averse they are compared with the market
average.

This environment introduces, in a tractable manner, a number of intuitive features of the aspects
that make an agent more or less central than others. Specifically an agent i has higher centrality
(i.e., makes q (s) higher more often) when she is present when (a) the average agent in the market
has a lower endowment in expectation, (b) the average agent in the market is more important
to the planner, (c) income volatilities are higher and/or agents have positively correlated income
shocks at ζ or (d) the degree of risk aversion of other agents in the market is higher, all of which
once again capture a sort of generalized notion of market thinness.

4.2. Foundations for Financial Centrality.

4.2.1. An Arrow Debreu Economy: Financial Centrality as the Price of Personalized Debt. First we
study an Arrow Debreu economy. The main assumptions we need for results in this section are inert
market participation and that income and market participation shocks are independent; without
this assumption, there could be non-pecuniary externalities in the market participation decision
which will not be reflected in the equilibrium prices (i.e., we may lose the constrained-efficiency
result).

We consider an Arrow Debreu economy, where agents can buy and sell claims on income and
consumption, contingent on the configuration of the market and the nature of income shocks.
However, agents cannot buy or sell income claims that will pay off in states where they are unable
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to trade (since there is no physical way to make such transfers), which we formalize as “consumption
space shocks” (as in Mas-Colell et al. (1995)). Formally, let Aŝ denote the Arrow Debreu (AD)
asset4 that pays 1 unit of the consumption good if the state is s = ŝ, nothing if s 6= ŝ, and
ai (ŝ) ∈ R the demand of asset Aŝ=s by agent i. Consumption for agent i at state s = (y, ζ) is then
ci (s) = yi + ai (s). The market participation constraint can be introduced by imposing a physical
constraint: whenever ζi = 0 we must have ai (s) ∈ {0} (i.e., agents cannot trade in assets that they
will not be able to be present in the market to clear the trades ex-post).

To simplify proofs and exposition, we consider cases where there is only a countable number of
possible income shocks, so that S =

∏
i (Yi × {0, 1}) is also countable, and where P (s ∈ S) > 0

for all s ∈ S. Given Arrow Debreu prices r̂ (s) for each As and a vector of lump sum transfers
τ = (τi)i∈I , such that

∑
i∈I τi = 0, agents choose consumption and asset purchases to maximize

expected utility, given her budget constraint:

(4.2) max
{ci(s),ai(s)}

Es {ui [ci (s)]}

(4.3) s.t :


ci (s) = yi (s) + ai (s) for all s ∈ S

ai (s) = 0 for all s ∈ S : ζi = 0∑
s∈S ai (s) r̂ (s) ≤ τi.

As we did when defining the Lagrange multipliers for the planning problem, we normalize the
price function as r (s) = r̂ (s) /P (s), changing the budget constraint in the consumer problem as

(4.4) Es [ai (s) r (s)] :=
∑
s∈S

ai (s) r (s) P (s) ≤ τi.

A Walrasian Equilibrium with transfers τ is a triple (c, a, r) =({ci (s) , ai (s)}i∈I,s∈S , {r (s)}s∈S)
such that

• {ci (s) , ai (s)}s∈S solves (4.2) with budget constraint (4.4) for all i ∈ I, given (normalized)
prices r (s) = r̂ (s) /P (s) and τ = (τi)i∈I ,
• asset markets clear:

∑
i∈I ai (s) = 0 for all s ∈ S,5 and

• consumption good markets clear:
∑
i∈I ζici (s) ≤

∑
i∈I ζiyi for all s ∈ S.

A Walrasian Equilibrium is an equilibrium (c, r) with no transfers (τ = 0), that is, the net value
of purchases and sales of securities in the ex-ante budget must sum to zero. In Proposition 4.3
below, we show a version of the First and Second Welfare Theorems for this economy, which is an
application of the classical welfare theorems to this environment (See Mas-Colell et al. (1995)). This
can be qualified as a welfare theorem with “constrained efficiency,” since the constraint that lack
of market access (i.e., ζi = 0) implies autarkic consumption is interpreted as a physical constraint
(i.e., a social planner could not change an inactive agent’s consumption either).

4Formally, Aŝ (s) =
{

1 if s = ŝ

0 otherwise
is the return matrix of the AD security paying only at state ŝ.

5If ∃s̃ ∈ S : P (s̃) = 0, then we can interpret this condition as imposing the constraint that ai (s̃) = 0 for all i ∈ I
(i.e., agents cannot trade in probability zero events).
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Proposition 4.3 (Welfare Theorems). Suppose the environment exhibits market participation
inert to infinitesimal liquidity injection, with ζ ⊥ y. Take a planner’s problem (3.1) with Pareto
weights λ ∈ ∆n, and an optimizing allocation c = (ci (s))i∈I,s∈S, with normalized Lagrange multi-
pliers q (s) (as defined in (A.1)). Then, (c, r) is a Walrasian Equilibrium with transfers τ , where
r (s) = q (s) for all s ∈ S and τi = Es {[ci − yi (s)] q (s)}. On the other hand, if (c, r) is such an
equilibrium with transfers τ , then there exist Pareto weights λ ∈ ∆n such that c is the allocation
solving planner’s problem (3.1) (where we again have q(s) = r (s)).

An important Corollary of Proposition 4.3 (and most classical proofs of Second Welfare Theorems
in various settings) is that it gives us an explicit formulation for the equilibrium Arrow Debreu
security prices at the implementing equilibrium, which coincide with the shadow values q (s) at
the resource constraint at each state s.6 But then, since we can interpret this economy as one
with complete markets (once we interpret market participation shocks as consumption sets shocks)
r (s) P (s) is a pricing kernel, which greatly simplifies the pricing of additional assets, if available
to the market. More explicitly, if we add to this economy, on top of the Arrow Debreu securities
offered, an asset with return payoff function ρ (s) ∈ R, its (no arbitrage) equilibrium price in this
economy would be

Price = Es [ρ (s)× r (s)] :=
∑
s∈S

ρ (s) r (s) P (s) .

Using the results from 4.3, we can then show that financial centrality can be thought as the
equilibrium price of an asset (which we dubbed personalized debt) with return payoff matrix ρi (s) =
1 if s : ζi = 1.

Proposition 4.4. Suppose y ⊥ ζ and let (c, r) be the Walrasian Equilibrium with transfers τ =
(τi)i∈I that implements the planner’s problem (3.1) optimal allocation c with Pareto weights λ ∈ ∆n.
Then

FCi =
∑
s∈S

ρi (s) r̂ (s) =
∑
s∈S

ρi (s) r (s) P (s) .

That is, financial centrality is the price of a personalized debt asset implementing Walrasian Equi-
librium with transfers.

4.2.2. Bargaining Foundations. We next study a foundation for financial centrality, where agents
engage in ex-ante cooperative (Nash) bargaining. We show that there is a positive linear relationship
between the “representing Pareto weight” of an agent and her financial centrality measure. Suppose
agents decide the social contract by bargaining ex-ante among themselves. Agents receive an
expected utility Ui = E [ui (ci (s))] in a contract. If they reject the proposed social contract, then
agents get their “disagreement point,” or autarky value, Uauti = Eyi [ui (yi)]. The social contract
is the choice of a feasible consumption allocation c (s) = {ci (s)}s=(y,ζ). If the bargaining process
satisfies Pareto optimality, linearity in utilities, and independence of irrelevant alternatives, then

6If the environment had endogenous participation where agents choose whether or not to trade, as in Section C.2,
then there typically will be pecuniary externalities from this choice. This will not be reflected in the equilibrium
prices. A richer model where agents could pay others for their market participation (e.g., a Lindahl equilibrium)
would restore efficiency.
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the optimal contract solves

max
c(s)

∏
i∈I
{Es {ζiui [c (s)] + (1− ζi)ui (yi)} − Eyi [ui (yi)]}αi

subject to
∑
i ζici (s) ≤

∑
i ζiyi, for some vector α such that

∑
i αi = 1 and αi ≥ 0. This is equivalent

to solving the following program:

max
c(s)

∑
i∈I

αi ln {Esζi [ui (ci (s))− ui (yi)]}

s.t :
∑
i∈I

ζici (s) ≤
∑
i∈I

ζiyi for all (y, ζ) .

We show that holding everything else fixed, agents with higher financial centrality have also higher
Pareto weights. This suggests that, if agents bargain over risk sharing contracts, holding autarky
as a threat point of the negotiation, then agents with higher centrality should have higher portions
of aggregate income.

Proposition 4.5. Suppose ui (c) = −r−1
i exp (−ric) and y ∼ N (µ,Σ). Then, the Pareto weights

associated with the Nash bargaining solution with bargaining weights α ∈ ∆n satisfy the following
fix point equations:

(4.5) λi = αiri + FCi (λ)

pi exp
(
−riµi + r2

i
2 σ

2
i

) for all i.

In particular, for the symmetric Nash bargaining solution (αi = 1) and homogeneous preferences
and i.i.d. income, we get that the representing Pareto weights are not uniform (λi 6= 1/n) but
rather satisfy

(4.6) ln (λi) = κ+ ln [r + FCi (λ)]− ln (pi)

so the heterogeneity in the market participation process has a bite. In the Supplementary Infor-
mation, we study two alternative foundations: an alternative Kalai-Smorodinsky bargaining model
(Proposition A.3), which delivers a similar relationship between centrality and bargaining weight
and a Walrasian General Equilibrium model (Online Appendix E)

Example 3: Empirics; Village Risk Sharing. Next, we study the empirical content of our
theory. To do this, we look at the Townsend Thai village data over 15 years. This data follows 338
households across 16 villages where we have detailed data on consumption, income, and transactions
across villagers (Townsend, 2016). In particular, in this setting we have variation in the number of
transactions per time period. A complete empirical analysis of the patterns of risk sharing in these
villages, motivated by and based on the framework outlined in this paper, can be found in (Kinnan
et al., 2019).

Our theory has a unique prediction. In a setting where agents share risk, those that provide more
value—higher measures of financial centrality—are exactly those that are in the market when the
market is thin (in a generalized sense including few active traders and greater per-trader-volatility
in income). And those who are more central in this sense claim a greater share of the surplus, in
this case higher average consumption.
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We proceed in two steps. First, develop a measure that reflects FCi = ∂V
∂ti

. As shown above,
if Pareto weights are determined by bargaining, then a more financially central individual i has a
higher Pareto weight λi. So, though we do not observe financial centrality, we can use observa-
tions on consumption in panel data to obtain an estimate of a function for each agent i which is
monotonically increasing in the Pareto weight λi. We can estimate a regression of consumption on
household income, using only active periods

civt = αi + βyivt + δtv + εivt

where t is indexing a set of active periods, αi is a household fixed-effect, and δvt is a village-by-time
fixed-effect. Under CARA utility the αi is a monotone function of Pareto weights λi.

We also know from our theory the crucial component in our financial centrality measure is
market thinness. So we compute measures of market thinness for each household. We can observe
the number of active agents in a given village in a given period as well as the volatility due to the
composition of active agents. As such, we define

ρζi := covt
(
ζit,

1
nvt

)
and ρσi := covt (ζit, σ̄t) ,

where nvt is the number of active participants in period t in a village v, computed from the transfers
data as mentioned, and where σ̄2

t := 1
nζt

∑
i,j ζitζjtσ̂i,j,t is an estimate of the volatility at period t,

where σ̂i,j,t is the measured covariance between households i and j’s income.
To study the prediction of the theory, we study a regression

αi = β0 + β1ρ
ζ
i + β2ρ

σ
i + ui.

Our theory suggests that β1 > 0 and β2 > 0 as being present in generalized thin markets should
correspond to higher endogenously determined Pareto weight and therefore higher average con-
sumption. We note that this is an observational claim, but it is not mechanical: that those who
are present exactly when the market is thin tend to receive a greater mean consumption, even
conditional on wealth, is consistent with our model.

Table 1 presents the results. Columns 1-2 include each measure of market thinness when the agent
enters one-by-one and column 3 includes them together. We see a one-standard deviation increase in
the tendency to enter when the market is thin in numbers is associated with a corresponding 0.095
standard deviation increase in mean consumption (column 1, p = 0.021). Similarly, a one-standard
deviation increase in the tendency to enter when the market is thin in the sense of high volatility
is associated with a corresponding 0.103 standard deviation increase in the mean consumption
(column 2, p = 0.04). These estimates are stable to being jointly included (column 3).

Taken together, the results are consistent with a story where agents have determined Pareto
weights through a bargaining process, and those who have higher weights and therefore higher
financial centrality are precisely those who tend to be active traders when the market is thin either
in terms of numbers of individuals or volatility. This observation is new to the literature and, to
our knowledge, unique to our model.

4.3. Choosing to Enter the Market. While we have focused on environments that were inert
to an infinitesimal liquidity injection in the above, we show an example where there is a shift in
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Table 1. Do Pareto weights correlate with measures of market thinness when the
agent is active?

(1) (2) (3)
VARIABLES αi αi αi

ρζi 0.095 0.112
(0.041) (0.045)

ρσi 0.103 0.118
(0.050) (0.051)

Observations 338 338 338
Robust standard errors in parenthe-

ses. The dependent variable is a (mean
zero, standardized) Pareto weight es-
timate of a given household, obtained
from using the vectors of household
fixed effects from a regression of con-
sumption on household income. Regres-
sors are each standardized as well.

the participation decision itself. We provide several other examples of endogenous participation,
showing when this is responsive or inert to liquidity injection, in Online Appendix C. In this
example, the consumption allocation c = (ci (s))i∈I,s∈S is common knowledge, but agents have
random market participation costs, which are privately observed. Formally, agents observe a cost
ki ∈ Ki, and costs are jointly distributed according to distribution G (k) with full support in an
interval in Rn, and are independent of the income shocks y.

Given the consumption allocation, an equilibrium market participation is a set of mappings
ζ∗i : Ki → {0, 1} such that if ζ∗i (ki) = 1 then

(4.7) Ey,k
{
ui
[
ci
(
y, ζ∗−i (k−i)

)]
− ui (yi) | ki

}
≥ ki.

That is, it is a Bayesian Nash Equilibrium in an incomplete information game where agents’s
strategies are their market participation decisions.

In this example, we assume ui = u for all i, λi = 1/n for all n, and yi ∼i.i.d N
(
µ, σ2), so that

ci = yζ whenever ζi = 1. We also assume that the conditional distribution of k−i | ki is FOSD
increasing in ki.7

Under these assumptions, we show that

(1) ζi (ki) = 0 for all ki is the lowest participation equilibrium.
(2) There exist thresholds k =

(
ki
)
i∈I

and an equilibrium ζ (k) such that ζi (ki) = 1 if and
only if ki ≤ ki. Moreover, ζi (ki) ≥ ζ∗i (ki) for all k ∈ Kn, all agents i ∈ I, and for any other
equilibrium participation ζ∗ (k). In what follows, we characterize the market participation
equilibrium with highest market participation (i.e., highest nζ) for all realizations of private
costs ζ (k).

7This is satisfied, for example, if costs are independent, ki ∼ Gi (ki) for all i. It is also satisfied if ki = K + ξi, where
K is a random variable, and ξi ∼i.i.d F (ξ) with zero mean.
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Define k∗m as the threshold if agents had complete information about the market size: k∗m =
Ey {u (ym)− u (yi)} ≥ 0.8 Also, for m ≤ n define π

(
m, k

)
:= P

(∑
i ζi (ki) = m

)
, which can be

written as a function of the thresholds k as π
(
m, k

)
=
∑
J :|J |=m P

(
kj ≤ kj∀j ∈ J and kh > kh∀h /∈ J

)
.

Equation (4.7) can be used to obtain a fix point equation for the thresholds k :

kj = Ψj

(
k, εi

)
:=

∑
m≤n

Ey
{
u

(
ym + ζi (ki)

εi
m

)
− u (yi)

}
× π

(
m, k | kj

)
where π

(
m, k | kj

)
= P

(∑
i ζi (ki) = m | kj

)
. Finally, let Jk =

[
∂Ψi
∂kj

]
i,j∈I

be the Jacobian (with
respect to k) of the above vector Ψ, and define the matrix of distributed cross-centralities Fn×n as

Fij = Es

[
ζiζj

q (s)
nζ
| kj

]
where ζj = ζj (kj) .

Intuitively, when agent i gets ε extra unit of income, then in the optimal equilibrium allocation, if
agent j is also present, i obtains ε/n. This extra income increases expected utility by q (s). Propo-
sition 4.6 shows the decomposition of centrality into the risk sharing effect and the participation
effect.

Proposition 4.6. Under the above assumptions,

FCi = Es [ζiq (s)] + Λ′ (I − Jk)−1 · F(i) = Es [ζiq (s)] + Λ′
∑
t∈N

[Jk]t · F(i)

where F(i) = (Fi1,Fi2, . . .Fin) and Λ = (Λj)j∈I where Λj :=
∑n
m=1mk

∗
m
∂π(m,k)
∂kj

≥ 0.

The risk-sharing component is as usual. The participation effect can be interpreted as follows.
Consider a term

[
Jtk
]
ij . If t = 1, this directly encodes the change in the participation of i when j’s

threshold cost of entry changes infinitesimally. For higher t, as is usual for such positive matrices,
this encodes a (weighted) chain of terms. If t = 2, it is easy to see it now sums over every chain,∑
l
∂Ψi
∂kl

∂Ψl
∂kj

, which captures both the change in the participation decision of i due to the increase
in cost for l as well as change in participation for l due to an increase in cost for j. This can
be thought of as a chain rule, or the indirect effect of distance 2 by increasing the equilibrium
threshold cost for j. Now more generally for higher orders of t, this encodes larger chains. This is
typical of numerous notions of network centralities in the literature and analogously our (weighted)
endogenous network here is Jk.

The more subtle feature here is that not only do chains of participation effects matter, but also
these are weighted by the very effect of the liquidity injection itself. A typical eigenvector-like
centrality for adjacency matrix g would be of the form x ∝

∑
t g
t · 1, where xi is the centrality, and

so all paths from i to js of t lengths are counted and added up. In our case, we don’t add up the
terms with equal weight, but rather weight by ∂Ψj

∂εi
—the change in j’s participation decision due

to the injection itself. (In the proof we show that the above term is equivalent, Fij = ∂Ψj
∂εi

.) So

8Because u (·) is strictly increasing and concave, and ym is a mean preserving spread of yz with z ≤ m (since
ym ∼ N

(
µ, σ2/m

)
)
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returning to an overall term, we can write the participation effect as

∑
j

Λj
∂Ψj

∂εi

∑
t∈N

[Jk]t

ji

.

The interpretation is clear. It takes the weighted direct and indirect effects of the marginal change
in participation due to a cost increase but then weights the effect of i on every other agent in the
network by how much their participation is also directly affected by the liquidity injection itself,
holding the entry cost fixed.

To understand the intuition, consider the following simplified case. Imagine that i was the only
agent with endogenous entry (i.e., all other agents that may have market access when i enters have
costs that are negative so entry is free or above the threshold for entry so they never enter). In this
case, numerous terms drop from the above, and so the participation effect of financial centrality
immediately becomes

Λi · Es

{
ζiq (s) 1

nζ

}
.

Note that this is a monotone function of the risk-sharing effect of financial centrality meaning the
same agents who are financially central without the endogenous effect of liquidity injection will be
financially central with such an effect. Of course the more general case involves the network of
effects characterized above.

4.4. Large Transfers. We now consider a thought experiment where a larger transfer T can be
distributed to a subset of all agents and define financial centrality in this large-transfer setting. We
will show that the intuition studied in the small-transfer case holds true for non-marginal transfers.

Specifically, we consider increasing the endowment of a subset of agents J ⊆ I, across all values
of income, whenever they can trade by a total amount T > 0 to finance this increase. So, the
policy consists of offering a “credit line” but really a transfer, contingent only on participation and
without any repayment obligations. Then t = (tj)j∈J ≥ 0 changes the income process for agent
j ∈ J to ŷj (s) = yj + ζjtj for all s = (ζ, y) with

∑
tj = T . This is a commitment to a named trader

j without knowing what situation the trader will be in.
If V (t) is the maximization problem’s value function, with income process yj = ŷj , the planner

would choose t = (tj)j∈J ≥ 0 to solve

(4.8) max
t∈R|J|+

V (t) s.t
∑
j∈J

tj ≤ T.

Note that V (t) here is a general value function, which could come from the corresponding solution
V of program (3.1), but this not required. This allows us to define financial centrality more generally
in the conte

Definition 4.1. We define financial centrality for total transfers T of agent i ∈ I, where t? is a
maximizer of program (3.1), as

FCTi := Vi (t∗) = ∂V

∂ti
|t=t∗ .
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The financial centrality for total transfers T is defined relative to a hypothetical transfer of T
and computes the relative gain in the value due to rewarding agent i with a transfer ti for any
maximizing transfer vector t∗ such that

∑
j t
∗
j = T .9

Any allocation that maximizes the objective function must, when giving a transfer to a set of
agents K, not benefit at the margin by providing transfers to a set of agents J\K. We show that
in fact there will be a cutoff where the (endogenously determined) set of agents who are provided
non-zero transfer will be financially more central than all other agents who receive no transfers
in equilibrium. Further, if the total to be transferred is small enough, then the unique solution
is to provide the entirety of T to a single agent rather than a subset of agents, and in this case
FCTi ≈ ∂V

∂ti
|t=0 and the agent has the highest financial centrality, which corresponds to the leading

case we have been studying earlier in the paper. When we evaluate centrality at T = 0 (and hence
t∗ = 0 is the only possible solution) we write (with some abuse of notation) simply FCT=0

i = FCi.
Next, we consider the situation where the transfers T > 0 are non-trivial in size but in the case

of the CARA preferences with risk aversion parameter r, normally distributed endowments with
variance covariance matrix (σij), and heterogenous Pareto weights λi. We show that if t∗i > 0 then
we can calculate the financial centrality for transfer T for agent i as

FCTi =
∑

ζ∈{0,1}n
P (ζ)λζ exp (−rµ) exp

(
r2 σ

2
ζ

2nζ

)
︸ ︷︷ ︸

=h(ζ)

exp (−rtζ) .

Here λζ = exp
[
n−1
ζ

∑
j ζj ln (λj)

]
is the simple geometric average of Pareto weights at market ζ,

and tζ = n−1
ζ

∑
ζjtj the average liquidity injection made available at market ζ. We can see that the

average income, volatility, and market size when i is present all contribute to financial centrality
in the usual way.

For any set of agents A ⊆ I, let ζA ∈ {0, 1}n denote the market where only agents belonging to
A have market access.

Proposition 4.7. Take the CARA-normal model with ζ ⊥ y and homogeneous preferences (ri = r for all i)
and let t∗ ∈ Rn+ be a solution to 4.8 with J = I.

(1) If t∗i > 0 then we can calculate the financial centrality for transfer T for agent i as

FCTi =
∑

ζ∈{0,1}n
P (ζ)λζ exp (−rµ) exp

(
r2 σ

2
ζ

2nζ

)
︸ ︷︷ ︸

=h(ζ)

exp (−rtζ) .

(2) If i, j are such that such that t∗i > 0 and

(4.9) P
(
ζ{i,A}

)
h
(
ζ{i,A}

)
≥ P

(
ζ{j,A}

)
h
(
ζ{j,A}

)
for all A ⊆ I\ {i, j}

then t∗i ≥ t∗j . If there exist some A ⊆ I\ {i, j} for which (4.9) is strict, then t∗i > t∗j .

9Program (4.8) will typically have a unique solution in our applications. However, if there is more than one maximizing
transfer scheme , the choice of where to evaluate V for the definition of centrality is irrelevant, as long as V (T ) is
differentiable (see Corollary 5 in (Milgrom and Segal, 2002)).
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This says that if i is more central than j in a strong sense, then i will receive higher transfers than
j. Of course, the condition for Proposition 4.9, part 2 implies that FCi ≥ FCj (i.e., around T = 0),
since FCi =

∑
ζ P (ζ)h (ζ), but this is a stronger requirement. However, this robustly captures the

intuition from above, that even for non-marginal transfers, those who tend to be in rooms that are
smaller, more volatile, more important, or require more insurance are indeed deemed to be more
central, even if the exact formulation is not analytically tractable.

Further, returning to endogenous participation, it is worth noting why our notion of centrality
is defined with respect to injections happening ex-ante, before incomes are realized. Namely, our
notion solves potential incentive problems. First, if income is privately observed, and injections are
based on reported values, then agents may have incentives to report low income values in order to
receive higher liquidity injections. Second, consider the case of moral hazard in income production.
If income has to be produced (by investing or applying effort) and agents know that they will
receive insurance from the planner, this dampens incentives for production, as in the standard
moral hazard problem. Though making liquidity provision non-contingent may not be the optimal
mechanism, it is robust in its ability to resolve the potential incentive problems in more general
environments without having to spell out all the details of the model.

5. Discussion

In a number of economic environments, agents in a market share risk, but there is heterogeneity in
market access, in the ability to participate in exchange. This is true of financial markets with search
frictions, matching with limited and stochastic market participation, and in some monetary models.
This is observed in risk-sharing village networks, among other settings. A common, standard model
which we extend to a stochastic financial network (exogenous or endogenous market participation
shocks) is used to address the question of how one measures an agent’s importance in such settings.
We define the financial centrality of an agent as the marginal social value of injecting an infinitesimal
amount of liquidity to that agent. So, we characterize financial centrality as measuring the price
of a personalized bond: i.e., an asset that pays whenever agent i is able to trade, and anyone can
trade in that asset. Therefore, centrality can be measured using classical asset pricing techniques,
once the equilibrium pricing kernel is estimated. We show that the most valued agents are not only
those who trade often, but trade when there are few traders, when income risk is high, when income
shocks are positively correlated, when attitudes toward risk are more sensitive in the aggregate,
when there are distressed institutions, and when there are tail risks. From a financial networks
perspective, we provide a new contribution to the literature: an agent is more central, holding fixed
frequency of trade, the fewer links or transaction partners she has.

Additionally, we look at a different decentralized environment, where agents engage in ex-ante
cooperative bargaining, which determines the Pareto weights. We show the resulting weights depend
on exactly the same features (thinness of market when the agent is present, volatility when the
agent is present, taste for risk when the agent is present, and so on), that is, in the same way as
financial centrality. This allows us to study financial centrality in the data without observing it
directly. We turn to a setting, where we have the requisite data, rural Thai villages. We provide
observational evidence from village risk-sharing network data, consistent with our model, that the
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agents that receive the greatest share of the pie are indeed those who are not simply well-connected,
but are active precisely when the market is otherwise thin in number of participants or consisting
of participants with high ex-ante volatility of income.

The framework extends to both endogenous participation models, as in private information,
moral hazard, or team production models where financial centrality may or may not have an
extra component. In some contexts, endogenous participation has an identical form as exogenous
participation; the infinitesimal liquidity injection does not generate a change in the participation
distribution per se, so formally the participation decision can be thought of as exogenous. In other
cases, endogenous participation leads to a change in the composition of participants in equilibrium
due to the liquidity injection. Finally, normative analysis is straightforward with the intuitions from
the small liquidity injection case carrying through exactly—in the case of inertness—to the case with
large transfers by the policymaker to potentially a set of agents. Moral hazard concerns rationalize
why we have taken an ex-ante perspective. The provision of liquidity and its characterization can
be generalized to environments in which the policymaker has limited controls.
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Appendix A. Proofs

A.1. Financial Centrality as Value of Marginal of Liquidity Injection. Going back to our
first example, with initial endowment of liquid assets A = {Ai}i∈I , which attains the maximum
value V (A). In this setting, we define financial centrality as in (3.1), but with an income distribution
defined as yi (s) = ei (s) + ζiAi. Imagine now that the social planner can increase the total supply
of liquid assets by ε > 0. We show that financial centrality not only gives the marginal social
value of liquidity, but also shows that for small enough ε, all the excess supply liquidity should be
allocated to the agents with highest financial centrality. Also, let ∆A∗i,ε be the optimal increase in
liquid assets for agent i.

Proposition A.1. Suppose V (A) is differentiable, and let φ∗ = maxj∈[m] FCj. Then, there exist
ε > 0 such that if ε < ε then ∆A∗i,ε > 0 if and only if FCi = φ∗.

The intuition behind the second part of Proposition A.1 relies on the fact that if V is differentiable
at t = 0, then it is approximately a linear function, and hence it is locally maximized by allocating
all the resources to the agent with highest marginal value, given by our notion of financial centrality.

Proof of Proposition A.1. Since V (t) is concave, this program is convex, and satisfies Slater’s
condition if T > 0, and hence the Kuhn-Tucker conditions of this program are both necessary and
sufficient. The Lagrangian of program 4.8 is L (t, η, ν) = V (t)+η

(
T −

∑
j∈J tj

)
+νjtj . Kuhn-tucker

conditions are
(1) Vj (t) = η − νj for all j ∈ J , where Vj = ∂V/∂tj

(2) νjtj = 0 for all j ∈ J
(3) νj ≥ 0 for all j ∈ J
(4) η

(
T −

∑
j∈J tj

)
= 0 and η ≥ 0

If at an optimum t∗ we have that t∗i > 0 then Vi (t∗) = ν. If Vj (t∗) < Vi (t∗) = ν then we must have

νj = Vi (t∗)− Vj (t∗) > 0

implying that t∗j = 0.
To show (2), Propose the following solution: t∗i = T, t∗j = 0 for all j 6= i, η = Vi (t∗) and

νj = η − Vj (t∗). Since V is differentiable, its partial derivatives are continuous around t = 0.
Therefore, ∃T̂J > 0 such that for all t ∈ τ =

{
t :
∑
j∈J tj < T̂J and tj ≥ 0 for all j ∈ J

}
we have

Vi (t) ≥ Vj (t) for all j ∈ J ∼ {i} (since FCi ≥ FCj). Therefore, if T < T̂ , a solution t∗ ∈ τ , and
therefore we have Vi (t∗) > Vj (t∗) for all j, and hence νj = η− Vj (t∗) = Vi (t∗)− Vj (t∗) > 0; i.e. t∗

satisfies the Kuhn-Tucker conditions. To prove uniqueness, suppose there exists another solution
t̂ :

∑
j∈J t̂j < T̂ and ∃k 6= i with t̂k > 0. If that was the case, then η = Vk (t). But because∑

j∈J t̂j < T̂ we also have that Vi
(
t̂
)
> Vk

(
t̂
)
. Therefore, Vi

(
t̂
)

+ νi ≥ Vi
(
t̂
)
> Vj

(
t̂
)

= η,
violating condition (1). Therefore, the only solution to 4.8 is t = t∗. �

A.2. Characterizing Financial Centrality. In what follows, we will explore the properties of
which agents are more financially central as a function of fundamentals such as propensity to be
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an active trader, composition of those who are active when the agent is active, variances and
covariances of incomes of active traders, risk preferences, and so on.

We next develop a useful formulation of financial centrality in terms of the multipliers of the
maximization problem in (3.1).

Let q̂ (y, ζ) be the Lagrange multiplier for the first condition and define an auxiliary multiplier
vector

(A.1) q (y, ζ) : q̂ (y, ζ) := q (y, ζ) P (y, ζ) ,

and let γi (s) be the corresponding Lagrange multiplier for the non negativity constraint ci ≥ 0.
The Lagrangian for (3.1) is then

(A.2) L = Es

{∑
i∈I

λiui [ci (s)] + q (s) ζi [yi − ci (s)] + γi (s) ci (s)
}
.

In the baseline model, we assume market participation is independent of income draws. In this
case, financial centrality can be expressed using the envelope theorem on program (3.1).

Lemma A.1. Suppose the environment is inert to infinitesimal liquidity injection, and let q (s)
and γi (s) be the multipliers of Lagrangian (A.2) for program (3.1)Then

(A.3) FCi = Es {ζiq (s)} .

Proof. We use the classical envelope theorem on a variation of program (3.1), changing the income
of agent i to ŷi = yi + ζiεi. Then, the envelope theorem implies

∂V

∂εi
|ε=0= Es

[
ζi
∂L
∂yi
× ∂yi
∂εi

]
= Es {ζiq (s)} .

proving the desired result. �

The multiplier q (s) is, of course, the marginal value of consumption, at the (constrained) efficient
allocation ci (·). As we will see below, when defining a Walrasian equilibrium in an Arrow Debreu
economy defined on this environment, q (s) will correspond to the equilibrium price of the Arrow
Debreu security that pays only at state s. As such, equation (A.3) is effectively the price of a
fictitious asset that pays 1 consumption unit whenever ζi = 1, using q (s) as its pricing kernel.
Next, we can consider the case where the participation distribution is responsive to infinitesimal
liquidity injection. A key feature in responsive settings is that participation and income become
correlated.

Proof of Proposition 4.1. For simplicity of exposition, assume a finite state space (i.e., y is a
discrete random variable), so the Lagrangian is

L =
∑
y∈Y

∑
ζ∈{0,1}n

∑
j∈I

λjuj (cj) + q̂ (y, ζ)
∑
j∈I

ζj (yj − cj)

P (ζ | y) P (y) .
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Using the envelope theorem, we get that

FCi = ∂L
∂yi

=
∑
y∈Y

∑
ζ∈{0,1}n

ζiq̂ (y, ζ) P (ζ | y) P (y)

+
∑
y∈Y

∑
ζ∈{0,1}n

∑
j∈I

λjuj (cj) + q̂ (y, ζ)
∑
j∈I

ζj (yj − cj)

 ∂P (ζ | yi)
∂yi

P (y)

and using the facts that q (y, ζ) = q̂ (y, ζ) /P (y, ζ) and complementary slackness implies

q̂ (y, ζ)
∑
i∈V

ζi (yi − ci) = 0

for all (y, ζ). We can simplify this expression as

FCi = Ey,ζ {ζiq (y, ζ)}+ Ey,ζ


∑
j∈I

λjuj (cj)
∂P (ζ | yi)

∂yi

1
P (ζ | yi)︸ ︷︷ ︸

:=Si(ζ|yi)


proving the desired result. �

Proof of Proposition 4.2. The first order conditions of program (3.1) with Lagrangian defined
in (A.2) with respect to ci (s) whenever ζi = 1 is λiu′i [ci (s)] = q (s) (without taking into account
the non-negativity constraint over consumption). Therefore, if λi = λj = 1/n for all i, j ∈ I and
ui = u for all i, we then get that if ζi = ζj = 1 then ci (s) = cj (s) (i.e., all agents participating in the
market have equal consumption). Therefore, using the resource constraint, we obtain ci (s) = y (s)
whenever ζi = 1, and obviously ci (s) = yi otherwise. The first order condition also implies then
that q (s) = u′ [y (s)].

To obtain the approximation, we first make a second order Taylor approximation g (y) := u′ (y)
around y = E (y) = µ:

u′ (y) ≈ u′ (µ) + u′′ (µ) (y − µ) + u′′′ (µ)
2 (y − µ)2

and then taking expectations, we have

E
[
u′ (y (s)) | ζ

]
≈ u′ (µ)+u′′ (µ)E (y − µ | ζ)+ 1

2u
′′′ (µ)E

[
(y − µ)2 | ζ

]
= u′ (µ)+ 1

2u
′′′ (µ)σ2/n (ζ) ,

using the facts that E (y) = µ and that E (y − µ)2 = σ2/n (ζ) if income draws are i.i.d. Reorganizing
this expression, we get the desired result. �

The above result can be considerably generalized. Let us consider an extension that naturally
correlates participation with income and allows for considerable heterogeneity in incomes, Pareto
weights, tastes for risk, and so on. We suppose CARA utility and a jointly normal income distribu-
tion with heterogeneous mean, variance, and covarying income draws. Assume that agents observe
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shocks to income volatility and expected income to certain agents. To begin with, there is an aggre-
gate (fundamental) shock z ∈ Z with some distribution G (z). This fundamental shock affects pref-
erences expected income µ (z), income variance Σ (z), preferences ui (c, z) = − 1

ri(z) exp (−ri (z) c),
and even the planner’s preferences λ (z).

Formally, we assume y | z ∼ N (µ (z) ,Σ (z)) and ζ ∼ F (ζ | z), and are such that (y | z) ⊥ (ζ | z)
This is without loss of generality and nests the case where participation is endogenous prior to
observing the realized income, but after observing the realized shock z. With these assumptions,
income is Gaussian and (y | z) ⊥ (ζ | z). The conditional independence will buy us a simple
characterization.

Let µζ := 1
nζ

∑
i ζiµi be the average expected income of those trading, σ2

ζ := 1
nζ

∑
i,j ζiζjσi,j be

the average volatility, rζ :=
(

1
nζ

∑
i:ζi=1

1
ri

)−1
be the mean of the risk parameter of those trading,

and λ̄ζ :=
(∏

i:ζi=1 λ
rζ/ri
i

) 1
nζ be the risk-weighted geometric mean of Pareto weights.

Proposition A.2. Under the above assumptions, we have that

E [q (y, ζ) | z, ζ] = exp
[
−rζ (z)µζ (z)

]
× λζ (z)× exp

[
r2
ζ (z)
2 ×

σ2
ζ (z)
nζ

]
so financial centrality is given by

FCi = Ez,ζ

{
ζi × exp

[
−rζ (z)µζ (z)

]
× λζ (z)× exp

[
r2
ζ (z)
2 ×

σ2
ζ (z)
nζ

]}

where the market averages
(
rζ , µζ , λζ , σ

2
ζ

)
are functions of market fundamentals z ∈ Z.

Proof of Proposition A.2. Since shock z ∼ G (z) is realized after the liquidity injection is real-
ized, the Lagrangian used by the planner is

L = Ez

[
Es

{∑
i∈I

λi (z)ui [ci (s)] + q (s) ζi [yi − ci (s)] | z
}]

hence
L = Ez,s

{∑
i∈I

λi (z)ui [ci (s, z) , z] + q (s, z) ζi [yi − ci (s, z)]
}

So FOCs are
λi (z) ∂ui

∂c
[ci (s, z) , z] = q (s, z)

and in the CARA case,
λi (z) exp (−ri (z) ci (s, z)) = q (s, z)

and, using the same results as before, we see than given z, we have

q (s, z) = λ̂ζ (z) exp
(
−rζ (z) yζ

)
where λ̂ζ (z) := exp

[
1
nζ

∑
ζj
rζ
rj

ln (λj (z))
]
and rζ (z) :=

(
1
nζ

∑
ζj

1
rj(z)

)−1
. Now, because we know

that y | z ∼ N (µ (z) ,Σ (z)) we can also see that

Es [ζiq (s, z) | z] = Es
[
ζiλ̂ζ (z) exp

(
−rζ (z) yζ

)
| z
]
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and using the independence assumptions we then know that

Es [ζiq (s, z) | z] = Es (ζi | z)× exp
[
−rζ (z)µζ (z)

]
× λζ (z)× exp

[
r2
ζ (z)
2 ×

σ2
ζ (z)
nζ

]
integrating with respect to z gives us the desired result. �

A.3. Bargaining Foundations.

A.3.1. Nash Bargaining.

Proof of Proposition 4.5. From the first order conditions of the planner’s problem we have

λi exp (−rici) = λζ exp (−rζy)

so
− 1
ri

exp (−rici) = − λζ
riλi

exp (−rζy) .

Hence

Es [ζiui (ci (s))] = − 1
riλi

Es
[
ζiλζ exp (−rζy)

]
= − 1

riλi
Eζ

[
ζiλζ exp

(
−rζµ+

r2
ζ

2nζ
σ2
ζ

)]

= − 1
riλi

FCi.

Moreover

Es [ζiui (yi)] = − 1
ri
Es [exp (−riyi)]

= − 1
ri
Eζ

[
ζi exp

(
−riµi + r2

i

2 σ
2
i

)]

= − 1
ri

P (ζi = 1)︸ ︷︷ ︸
:=pi

exp
(
−riµi + r2

i

2 σ
2
i

)
.

This means
Es {ζi [ui (ci (s))− ui (yi)]} = 1

ri
pi exp

(
−rµi + r2

i

2 σ
2
)
− 1
riλi

FCi

and so
λi = αiri

λi
λi
pi exp

(
−riµi + r2

i
2 σ

2
i

)
− 1

λi
FCi

if and only if

λi = λiαiri

λipi exp
(
−riµi + r2

i
2 σ

2
i

)
− FCi

⇐⇒ λipi exp
(
−riµi + r2

i

2 σ
2
i

)
− FCi = αiri
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if and only if
λi = αiri + FCi (λ)

pi exp
(
−riµi + r2

i
2 σ

2
i

)
as we wanted to show. �

A.3.2. Kalai-Smorodinsky Bargaining. The second most used bargaining solution in the literature
is the Kalai-Smorodinsky solution. It also gives closed form solutions to Pareto weights and the
weights are expressed as a function of fundamentals of the environment, rather than a fixed point
equation.

The most important parameter in the bliss point. The bliss point for agent i, U i, is defined as
the utility she would achieve if she consumed all the available income in the market in every state
where she can trade and only her own income otherwise:

U i := Eζ,y

ζiui
∑

j

ζjyj

+ (1− ζi)ui (yi)


and U =

(
U1, U2, . . . , Un

)
. Likewise, the disagreement point U i is the value of autarky in this

environment for each agent
U i := Eyi [ui (yi)]

and U := (U1, U2, . . . , Un). The Kalai-Smorodinsky solution consists on finding the linear combi-
nation of U and the U that lies on the Pareto frontier of the utility possibility set; i.e, find α ∈ [0, 1]
such that αU + (1− α)U ∈ P (U), and the solution is U∗ = αU + (1− α)U . Since U > U , the
Kalai-Smorodinsky solution here would be

max
α∈[0,1],{ci(y,ζ)}i∈I

α

subject to Ey,ζ [ζiui (ci (y, ζ)) + (1− ζi)ui (yi)] ≥ αU i + (1− α)U i for all i∑
ζici (y, ζ) ≤

∑
ζiyi for all (ζ, y) .

One of the most attractive properties of the Kalai-Smorodinsky solution is that the Pareto
weights derived from it have a closed form formula and is not a fixed point equation (as in the Nash
Bargaining solution case).

Proposition A.3. If the risk sharing contract is the Kalai-Smorodinsky solution over the utility
possibility set, then the Pareto weights associated with the solution are

λi = 1
Es {ζi [ui (Y (s))− ui (yi)]}
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where Y (s) =
∑
j ζjyj is the aggregate income in state s = (y, ζ). If ui (c) = −r−1

i exp (−ric) and
y ∼ N (µ,Σ), then

λi = β

pi × Eζ
{

exp
(
−rµ+ σ2

2

)
− exp

[
nζ
(
−rµ+ σ2

2

)]
| ζi = 1

}
where β = r/

(
−rµ+ σ2/2

)
.

The following corollary is an immediate consequence.

Corollary A.1. In the CARA-Normal model, with homogeneous preferences and i.i.d. income
shocks, if µ > r

2σ
2, then Lagrange multipliers are decreasing (in the FOSD sense) in market size.

Unlike Nash bargaining, Pareto weights in this environment have a closed form solution, so
comparative statics are easier to interpret, and the comparative statics are the same as the one
suggested by the Nash Bargaining fixed point equations. The most important feature, of course,
is that the elements determining λ are the same as those that determine our measure of financial
centrality. This correspondence allows us to operationalize financial centrality in empirical analysis.

Proof of Proposition A.3. The Lagrangian is

L = α+
∑

µi
{
Ey,ζ [ζiui (ci) + (1− ζi)ui (yi)]− αU i − (1− α)U i

}
+
∑
ζ,y

q (y, ζ) ζi (yi − ci) P (y, ζ)

with multipliers (µi)i=1:n and (q (y, ζ) P (y, ζ))y,ζ . First order conditions are

∂L
∂α

= 1− µi
(
U i − U i

)
since α ∈ (0, 1) (the bliss point cannot be feasible) then, to get an interior solution, we must have
∂L
∂α = 0 ⇐⇒ µi = 1/

(
U i − U i

)
. The first order conditions with respect to consumption are

∂L
∂ci (y, ζ) |ζi=1= 0 ⇐⇒ µiu

′
i (ci) P (y, ζ) = q (y, ζ) P (y, ζ)

therefore, in the planner representation, this is equivalent to the Pareto weights being

λi = µi = 1
U i − U i

.

In the CARA-Normal model, let Y :=
∑
ζjyj . Since y ∼ N (µ,Σ), we have Y | ζ ∼ N

(∑
ζjµj ,

∑
i,j ζiζjσij

)
.

Therefore
Ey

[
ui

(∑
i

ζjyj

)
| ζi = 1

]
= −1

r
E [exp (−rY )] = −1

r
MY (−r)

and MY (t) = exp
(
µY t+ t2

2 σ
2
Y

)
= exp

(
−rµY + r2

2 σ
2
)

= exp
(
−r × nζµζ + r2

2
∑
σij
)
. In the i.i.d.

case, MY (t) = exp
(
−rnζµ+ r2

2 σ
2nζ

)
= exp [nζ (−rµ+ γ)] and the autarky value is Ey [u (yi)] =

−1
r Myi (−r) = exp

(
−rµ+ r2

2 σ
2
)
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Therefore

U i − U i = E

ζi
ui

 ∑
j:ζj=1

yj

− ui (yi)

 = piEy,ζ

ui
 ∑
j:ζj=1

yj

− ui (yi) | ζi = 1


= pi ×

{
exp

[
nζ

(
−rµ+ r2

2 σ
2
)]
− exp

(
−rµ+ r2

2 σ
2
)}

proving the desired result. �

A.4. Endogenous Participation.

Proof of Proposition 4.6. We first need to show the existence of the equilibrium ζi (ki) such
that (a) ζi (ki) = 0 for all ki is the lowest participation equilibrium and (b) there exist thresholds
k =

(
ki
)
i∈[n]

and an equilibrium ζ (k) such that ζi (ki) = 1 ⇐⇒ ki ≤ ki , and moreover,

ζi (ki) ≥ ζ∗i (ki) for all k ∈ Kn, all agents i ∈ [n], and for any other equilibrium participation ζ∗ (k).
For this, define the incomplete information game

Γ =
{
Ai = {ζi ∈ {0, 1}} , Ui (ζ, ki) := ζiEy

{
u

(
y1+

∑
j 6=i ζj

)
− u (yi)− ki

}
+ E (u (yi))

}
.

Because yi ∼ N
(
µ, σ2) and u is increasing and concave, it is easy to show that Γ is supermodular

in ζi, ζ−i and supermodular in η = −ki (if ki were common knowledge). This, together with the
FOSD ordering assumption, makes Γ a monotone supermodular game of incomplete information
(as in Van Zandt and Vives (2007)), which ensures the existence of monotone BNE ζ, ζ such that
for any other equilibria ζ∗ (k), we have ζ

i
(ki) ≤ ζ∗i (ki) ≤ ζi (ki) for all i, ki ∈ Ki. Since ζi ∈ {0, 1},

both ζ, ζ are threshold strategies, ζi (ki) = 1 ⇐⇒ ki ≤ ki and ζ
i
(ki) = 1 ⇐⇒ ki < ki. Since

ki ≥ 0, it is easy to show that the profile where no one attends the market is a BNE of this game
and is clearly the lowest. The highest must prescribe market participation at the threshold, which
gives us the fix point equation,

Using the implicit function theorem, we know that if det (Jk) 6= 0 then any solution to fix point
of equation k = Ψ

(
k, εi

)
satisfies that

∂k

∂εi
|εi=0=

(
∂kj
∂εi
|εi=0

)
j∈[n]

= (I − Jk)−1 × F(i)

where F(i) =
(
∂Ψj
∂εi
| k, ε = 0

)
j∈[n]

. For this, knowing that u (·) is differentiable, we have that

u (ym + ζiε/m) = u (ym) + u′ (ym) ζi
ε

m
+ u′′ (ξ)

2
ε2

m2

for some ξ ∈
[
0, εm

]
. This implies that

k∗m (ε) := Ey [u (ym + ζiε/m)− u (yi)]

Ey [u (ym)− u (yi)] + Ey

ζiu′ (ym)︸ ︷︷ ︸
=q(s)

 ε

m
+ E

[
u′′ (ξ)

2

]
ε2

m2
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and therefore
∂k∗m
∂ε
|ε=0= lim

ε→0

k∗m (ε)− k∗m
ε

= Ey
[
ζi
q (s)
m

]
.

Thus,

Fij := F(i)
j = ∂

∂ε

∑
m≤n

Ey [k∗m (ε)]× π
(
m, k | kj

) =
∑
m≤n

Ey
{
∂k∗m (ε)
∂ε

|ε=0

}
× π

(
m, k | kj

)

=
∑
m≤n

Ey
[
ζi
q (s)
m

]
π
(
m, k | kj

)
= E

[
ζiζj

q (s)
nζ
| kj

]
.

Finally, the participation effect in this model is

PE =
n∑

m=1
mk∗m

n∑
j=1

∂π
(
m, k

)
∂kj

× ∂kj
∂εi

=
n∑
j=1

∂kj
∂εi
×

 n∑
m=1

mk∗m
∂π
(
m, k

)
∂kj


︸ ︷︷ ︸

:=Λj≥0 from FOSD assumption

proving the desired result. Moreover,

∂Ψj

∂kh
|k,ε=0= ∂

∂kh

∑
m≤n

Eyk∗m × π
(
m, k | kj

) =
∑
m≤n

Eyk∗m ×
∂π
(
m, k | kh

)
∂kh

≥ 0

and ∂Ψj
∂kj
|k,ε=0= 0, again using the fact that k−h | kh FOSDs k−h | k′h whenever kh ≥ k′h. �

A.5. Large Transfers.

Proof of Proposition 4.7. For part 1, the Lagrangian for this problem (given a vector of transfers
t∗ ∈ Rn+, and assuming ci (s) > 0 in the optimum) is

L = Es

{∑
i

λiui (ci) + q (s)
[∑

i

ζi (yi + ti − ci)
]}

The first order conditions under the assumption that y ⊥ ζ, homogeneous CARA preferences and
Gaussian income draws are the same as before, with ci = r−1 ln (λi) − r−1 ln [q (s)], but now q (s)
satisfies

r−1
n∑
i=1

ζi {ln (λi)− ln [q (s)]} =
n∑
i=1

ζi (yi + ti) ⇐⇒

ln
(
λζ
)
− ln [q (s)] = yζ + tζ ⇐⇒ q (s) = λζ exp

(
−ryζ

)
exp (−rtζ)

which then implies that Ey [q (s) | ζ] = E
[
λζ exp

(
−ryζ

)
exp (−rtζ)

]
= h (ζ) exp (−rtζ), where

h (ζ) = λζ exp
(
−rµζ

)
exp

(
r2σ2

ζ/nζ
)
. Therefore,

Vi (t) = ∂L
∂ti
|t=t∗= Es {ζiq (s)} = Eζ [ζih (ζ) exp (−rtζ)] .
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For part 2, suppose, by contradiction, that t∗j > t∗i . Based on Proposition A.1, since t∗i > 0 then
Vi (t∗) = Vj (t∗) = v∗. We can rewrite Vi (t∗) as

Vi (t∗) =
∑

A⊆I\{i,j}
P
(
ζi,A

)
h
(
ζi,A

)
exp

− r

1 + |A|
∑
k∈A

t∗k

 exp
(
− r

1 + |A| t
∗
i

)

+
∑

B⊇{i,j}
P
(
ζi,A

)
h
(
ζi,A

)
exp (−rtζ)

and analogously

Vj (t∗) =
∑

A⊆I\{i,j}
P
(
ζj,A

)
h
(
ζj,A

)
exp

− r

1 + |A|
∑
k∈A

t∗k

 exp
(
− r

1 + |A| t
∗
j

)

+
∑

B⊇{i,j}
P
(
ζi,A

)
h
(
ζi,A

)
exp (−rtζ) .

Therefore

Vj (t∗)− Vi (t∗) =
∑

A⊆I\{i,j}
exp

− r

1 + |A|
∑
k∈A

t∗k

 [P
(
ζj,A

)
h
(
ζj,A

)
exp

(
− r

1 + |A| t
∗
j

)

− P
(
ζi,A

)
h
(
ζi,A

)
exp

(
− r

1 + |A| t
∗
i

)
]

≤︸︷︷︸
(i)

∑
A⊆I\{i,j}

exp

− r

1 + |A|
∑
k∈A

t∗k

P
(
ζi,A

)
h
(
ζi,A

) [
exp

(
− r

1 + |A| t
∗
j

)
− exp

(
− r

1 + |A| t
∗
i

)]

<︸︷︷︸
(ii)

0

using in (i) that P
(
ζi,A

)
h
(
ζi,A

)
> P

(
ζj,A

)
h
(
ζj,A

)
for all A ⊆ I\ {i, j} and in (ii) the initial

assumption that t∗j > t∗i . For the second result, if t∗i = t∗j then we should have P
(
ζi,A

)
h
(
ζi,A

)
=

P
(
ζj,A

)
h
(
ζj,A

)
for all A ⊆ I\ {i, j}. As long as one such subset exists with strict inequality, gives

the desired result that t∗i > t∗j . �
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Online Appendix: Not for Publication

Appendix B. Interpretations of Environment

B.1. Example: Production Networks. Agents running small and medium sized business have
production technologies zi = aif(xi, ki) specifying inputs xi including material inputs labor and
outputs zi, subject to idiosyncratic and aggregate shocks impacting ai. In the context of a village
economy, as one example, one can think of agents as households and think of prices of inputs (w)
and outputs (p), respectively, as exogenously determined, outside the model. Profits, or losses, in
terms of the obvious fiat money numeraire are yi = pzi − wxi are thus stochastically determined.
Specifically within a period, previously accumulated capital ki is as a given endowment. Then given
current shocks ai, a household running a firm decides on hiring labor and purchasing intermediate
inputs to produce output zi at the end of the period, subject to potential collateral constraints
on financing (not written out here). This gives maximized within-period profits, which typically
are linear in ki. Profits are thus the random incomes that correspond with the primitives yi of
the basic model. Households are risk averse with indirect utility over potentially-smoothed end-of-
period incomes, depending on mechanisms available, in the village economy.

However, participation in these networks is subject to shocks. The set of producers from whom
intermediate inputs can be purchased, and the set of purchasers for sale are each a subset of
all agents and further, subject to shocks. Links in supply chains for example, get broken. One
mechanism to hedge variable profits is trade credit, for smoothing: if low, a firm can extend the
date due for debiting the budget, negotiating an account payable, or be less generous on extending
credit on accounts receivable, or, if profits are high, the opposite.

B.2. Example: Income as Portfolio Returns. Agents have an initial random endowment e ∈
Rn, jointly distributed Gaussian: e ∼ N (µe,Σe). After observing their endowment, they have
access to a set of K ≥ 1 risky assets, with random linear returns, and a safe asset with a gross rate
of return of 1. Formally, if an agent invests wik ∈ R units in asset k, she will get a gross return of
(1 +Rk)wik, where R ∼ N (ρ,Λ) where ρ ∈ RK and Λ is a K ×K symmetric and positive definite
covariance matrix. Their endogenous income is then yi = ei + w′iR. The only point of departure
with the usual risk sharing environment is on trading opportunities or market participation. Not
every agent is present in the market in every state; only a random set of agents gets access to the
market, which can be thought of as a meeting place where they can trade. If agents do not have
access to this market, they are in autarky and have to consume their endowment.

B.3. Generalizations. The basic setup can be generalized considerably. First of all, we can index
by time, with long or even infinite horizon. We can entertain Markov process on shocks. Our
timeline can be divided into sub-periods: traders meet in a market for two or more periods before
the next market participation draw (and we allow both implementation via bilateral links of a
multi-person outcome as well as borrowing and lending with risk contingencies within the longer
period). Though dynamics could easily be incorporated throughout most of the paper, we spare
the reader the requisite notation.
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We are featuring one good but we can easily generalize the notation and allow commodity vectors
over goods. Then there would be a sequence of resource constraints (market clearing), one for each
good; utility functions still strictly concave though. Likewise we can reinterpret goods as securities
and endowments as portfolios.

Trivially, our setting could be partial equilibrium with prices of all goods, or assets, fixed outside,
as in a small open economy, one market at a time, or one village at a time. In this case value
functions would be strictly concave over a selected numeraire good, taking outside prices as given.
It is also easy to allow preference shocks rather than endowment shocks.

Moreover, we can generalize this to many cliques of agents meeting or, in other words, many
segmented markets that are drawn in parallel, with ζ now being an n×k matrix and ζmi is a dummy
for whether i participates in market m. We study this in Online Appendix F.1.

Notice that our model does not force agents to interact with the same collection of agents in
every period or every state. So, for example, an agent of type A may interact with those of type B
in one state. But in another state perhaps agents of type A interact with agents of type C.

Appendix C. Responsiveness to Liquidity Injections

We explore agents’ choices to determine whether or not they participate in contexts wherein the
infinitesimal liquidity injection affects their participation distribution. This not only correlates y
and ζ through this endogenous decision making process (which alone does not necessarily make
the model responsive to injections), but changes the financial centrality expression as we noted
in Proposition 4.1. Centrality now captures how marginally increasing income in states that the
agent trades in, increases both the likelihood that the agent trades and the concurrent market
participation decisions of other agents. This stands in contrast to endogenous participation models
wherein the participation distribution is inert to infinitesimal liquidity injections.

C.1. Overview. Let us begin by clarifying the role of endogenous participation. There are two
cases. In the first, every agent can decide whether or not to participate, given a distribution of
participation opportunities. For instance, in a given state of the world, agents i1, . . . , im may have
the opportunity to enter the market, but not all necessarily decide to participate. If this decision
in equilibrium is unchanged by an ε liquidity injection to any agent, then we may as well imagine
the participation distribution as being exogenous. Such an example was given in the introduction.
Financial centrality is identical even in the case where agents choose to participate; after all, the
choice has no meaningful bearing on altering this distribution, so the planner evaluates the injection
in the same manner as if this participation distribution was indeed exogenous.

In contrast, in what follows below, we focus on cases where the injection affects the participation
decision itself. This allows us to study the participation effect, which thus far has not been a factor
in our analysis of financial centrality. Recall Proposition 4.1, wherein financial centrality included
an extra term

Es


∑
j∈I

λjuj (cj (s))

Si (ζ | y)


which we called the participation effect. The goal of this section is to study this term beyond
the example presented in the body. So we present two additional models that are responsive to
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infinitesimal liquidity injection, but with no income effect (i.e., Si (y) = 0 almost surely). We
also present for clarification and contrast, a fourth model in which participation and income are
correlated and yet the response is inert.

C.2. Private Information about Income Shocks. In this example, the consumption allocation
is also common knowledge, but agents can only observe (objective) private information about
both income shocks y ∈ Rn, and about other agents information. We encode beliefs and higher
order beliefs about income shocks and information using a type space structure, a modeling device
introduced by Harsanyi (1967). Formally, we model agents’ beliefs with a signal structure (or a
common prior type space) Z =

{
(Zi, βi : Zi → ∆ (Y × Z−i))i∈I , β0

}
where zi ∈ Zi is the agent’s

signal (or type). Here this represents the information she observes before observing the draw of
s = (y, ζ). β0 ∈ ∆ (Y ×

∏
i Zi) is a common prior distribution over income shocks and signals and

βi (· | zi) is the conditional belief distribution over income shocks and signals of other agents, derived
from β0 using Bayes rule.10 Because Y is assumed to be finite and the choice set for every agent is
binary, we can focus also only on finite signal spaces. We also add the constraint that margY β0 = F

(i.e., the marginal distribution over income shocks coincide with the true distribution of shocks).
Based on its type, agent i decides whether or not to access the market.

The timing is as follows:

(1) Income shocks y ∈ Rn+ is drawn according to F (y).
(2) Agents observe only zi ∈ Zi , which are jointly drawn with probability

(C.1) P (z | y) = β0 (y, z) /
∑
ŷ∈Y

β0 (ŷ, z) .

(3) Agents decide whether to access the market (ζi = 1) or not (which may be costly, with
commonly known participation costs ki) given their private information zi ∈ Zi.

(4) State s = (y, ζ) is publicly observed, and agents consume according to allocation c (s).

To characterize the agents’ market participation decisions, they need to form beliefs over the vector
of income draws and market participations. We will model this as a game, where agent’s strategies
are the mappings from information to market participation. The natural solution concept here is
the Bayesian Nash Equilibrium (BNE): a profile of functions ζ∗i : Zi → {0, 1}11 is a BNE if and
only if, for all i ∈ I and all zi ∈ Zi

if ζ∗i (zi) = 1 =⇒ Es {ui [ci (s)] | ζi = 1, zi} − ki ≥ Es {ui (yi) | zi}

where the expectations for each agent is taken with respect to the probability measure

P (s = (y, ζ) | zi) :=
∑
y∈Y

∑
j 6=i

 ∑
zj∈Zj :ζ∗j (zj)=ζj

βi (y, z−i | zi)

 .

10That is, for all (y, zi, z−i) we have βi (y, z−i | zi) = β0[y,(zi,z−i)]∑
t̂i
β0[y,(ẑi,z−i)] .

11Without loss of generality, we focus on pure strategy equilibria.
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Given a signal structure Z and a BNE profile ζ∗ = (ζ∗i (·))i∈I , we can then derive an ex-ante
equilibrium distribution over states s = (y, ζ) as

P (s = (y, ζ)) = P (y)
∑

z∈Z:ζ∗i (zi)=ζi∀i∈I
P (z | y) ,

using (C.1). This would be the measure used by the social planner when measuring financial
centrality, since she has to integrate over agents’ signals from an ex-ante perspective, according to
the assumed common prior distribution β0.

In the model proposed in Section C.2, we assume that the credit line policy t = (tj)j∈J is common
knowledge among agents, and hence the policy has no effect on the information agents have access
to. It does, however, affect the relative utility of market access. That is, the market access strategy
(given transfer ti ≥ 0) is

(C.2) ζ∗i (θi | t) = 1 ⇐⇒ Es {ui [ci (yi + ti, y−i, ζ)]− ui (yi) | θi} ≥ ki.

If ci (·) is a weakly increasing in own endowment (e.g., ci (s) = yζ in an environment with an
utilitarian planner, and agents with homogeneous preferences) the transfer ti acts as a subsidy
for market participation, increasing the set of signals θi for which condition (C.2) is satisfied.
However, since the transfer policy is assumed to be common knowledge, this also affects the marker
participation decisions of other agents. If ci is weakly increasing for all agents (e.g., also ci (s) = yζ)
then other agents also have higher incentives to access the market, since it is more likely that i will
be trading, and i is more valuable, since i increases aggregate income whenever she trades. We
summarize this result in the following corollary.

Corollary C.1. Consider the above model described in Section C.2 and λ ∈ ∆n. If the allocation
c (·) solving (3.1) is non-decreasing in y, then FCi > Es [ζiq (s)].

C.3. Moral Hazard and Effort in Accessing the Market. We briefly set up another example
of endogenous market participation, without fully analyzing it, which concerns moral hazard. This
is a generalization of the model analyzed in the preceding section. We take the exact same signal
structure as before. The only difference is that instead of being a binary decision (whether to access
the market or not) here we have a continuum of choices.

Assume that y is realized and every agent i observes only zi, an imperfect signal about y (i.e.,
zi ∼ πi (zi | y) for some conditional cdf πi). Given this private information, agents simultaneously
choose the probability of accessing the market, denoted by pi (zi) ∈ [0, 1] = P (ζi = 1). Agents have
to pay a disutility cost ψ (p), where ψ is strictly increasing and convex.

Given the profile of functions (pi : Zi → [0, 1])ni=1, the joint probability of market participation,
given income draws, is given by

P (ζ | z) =
n∏
i=1

[pi (zi)]ζi [1− pi (zi)]1−ζi .

Then consumption is realized according to a feasible consumption allocation ĉ (s) = ζici (s) +
(1− ζi) yi, where ci (·) is an (equilibrium) feasible allocation. For this example, we leave unspecified
the choice of the consumption allocation, and it is only assumed that the consumption allocation
as a function of the state s = (y, ζ) is common knowledge among agents.
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Agents preferences (given pi (·) ) are

Ui
(
yi, pi | (pj (·))j 6=i

)
= piEt−i,s

∑
ζ−i

∏
j 6=i

[pj (zj)]ζj [1− pj (zj)]1−ζj ui [ci (yi, y−i, ζi = 1, ζ−i)] | zi


+ (1− pi)ui (yi)− ψ (pi) .

As in the private information example above, the solution concept once again is the BNE, with
p∗ (t) = (p∗i (zi))i∈N such that for all i and all yi ∈ Y :

p∗i (zi) ∈ argmax
pi∈[0,1]

Ui

(
yi, pi |

{
p∗j (·)

}
j 6=i

)
.

C.4. Model with Investment in Risky Assets. Consider the model in Section B.2 , with no
participation effect (i.e. Si (ζ | y) = 0 a.e) where agents choose their portfolios wi ∈ RK after the
liquidity injection. We will show that in the case with CARA preferences and gaussian returns,
there is no income effect (i.e. Si (y) = 0 a.s.), although this would typically not happen with
different preferences.

The timing in this model is then (1) endowments are drawn; e ∼ N (µe,Σe) (2) Agents observe
(e, ζ) and choose portfolios wi (contingent on being in the market) (3) Returns are drawn R ∼
N (ρ,Λ) and incomes are realized as yi = ei + w′iR and (4) Consumption is realized according to
allocation. In general, an increase in the liquid asset could have effects on the demands of the
risky and risk free assets, changing marginally their portfolio choice, and hence, the distribution of
income. However, in the case of CARA preferences, this will not be the case.

Proposition C.1. Take the model with CARA preferences and gaussian returns. After the realiza-
tion of ei, the portfolio choice is wi = (riΛ)−1 ρ (i.e. is independent of the realization). Therefore,
income is distributed as yi = ei + ρ′ (riΛ)−1R.

Proof. See Online Appendix H. �

Corollary C.2. In the investment model with CARA preferences and gaussian returns, there is
no income effect; i.e., Si (y) = 0 a.s.

The reason behind the corollary is that the investment in the risky assets are independent of the
endowment level, and hence, will also be independent of the liquidity injection, since it is equivalent
ex-post to an increment in the available endowment. This is of course, a consequence of the absence
of income effects exhibited by CARA preferences.

An important corollary of this model is how this model obtains income draws more positively
correlated than the endowments process. More specifically, the result of Proposition C.1 implies
that the income distribution has a covariance structure given by

cov (yi, yj) = (rirj)−1 ρ′Λ−1ρ+ cov (ei, ej)

where the first component term, always positive, is the correlation resulting from the fact that all
agents hold different amounts of a market portfolio P = Λ−1ρ. This effect exacerbates aggregate
risk, both with inert or responsive environments in market participation. This source of contagion
is studied in Jackson and Pernoud (2019).
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C.5. Team Production Environments. Finally, we illustrate that simply having income and
participation being correlated does not mean a model exhibits responsiveness. We consider a
setting where market participation shocks are determined exogenously first and then the income
distributions for agents with market access depend on the identities of those trading. Formally,
the timing on the resolution of uncertainty would be as follows: (1) Market participation ζ is
drawn according a distribution G (ζ); (2) Income distribution is drawn from y ∼ F (y | ζ). A
leading example of such an environment is one of team production. Agents without market access
draw income from their autarky income distribution yi ∼ Fi (yi). However, once agents are drawn
together to form a market, income is drawn jointly, and then agents can divide aggregate income
draws amongst them in any feasible consumption allocation.

Models like this also show correlation between market participation and income. However, it
is straightforward to see that in such models, financial centrality is simply FCi = Es {ζiq (s)} as
before. This is simply because the injection policy of giving an injection to agent i has no effect on
the market participation distribution, since it is assumed here to be exogenous to income draws.
Clearly, this setting is one that is inert to infinitesimal liquidity injection. But unlike the baseline
model, income and market participation are now not independent, and the expectation has to be
calculated over market participation and income shocks jointly.

Appendix D. Market Formation Process

Until now our discussion of the stochastic financial network has been rather abstract. It has
been a fairly unrestricted distribution over the space of all subsets of agents: the realized market
can be comprised of any subset of agents and then there is a distribution over each possibility. It is
nonetheless instructive to examine specific examples that may micro-found the stochastic financial
network distribution.

To make matters simple, consider the homogenous parameter case. Since

(D.1) FCi ∝ Eζ
{
ζi

(
1 + γ

n (ζ)

)}
we need to calculate E

{
1

n(ζ) | ζi = 1
}
and P (ζi = 1).

D.1. Generalized Poisson Model. We generalize the degree model presented in the body. Let
zi ∈ [0, 1] denote the probability that an agent gets selected as the host. Then let p denote a
matrix with entries pi,j denoting the probability that j is in the market when i is the host, which
is independent across j. We set pi,i = 1.

It is useful to define an individual specific parameter, which is the expected number of individuals
in the trading room when i is selected as host, νi. This can be computed as νi :=

∑
j pij . To

characterize financial centrality, we need to know the expected sizes of the trade rooms when i

is host and conditional on i being in the room, integrating across the other possible hosts. Two
auxiliary random variables will be very useful in the rest of the section: n−i = (nζ − 1) | i is host,
and n−j,i = (nζ − 2) | j hosts & ζi = 1. This means that whenever i hosts, market size is nζ =
1 + n−i, and whenever j hosts, and we condition on i accessing the market, then market size is
nζ = 2 +n−j,i. This auxiliary random variables have range from 0 to k ∈ {n− 1, n− 2}, and based
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on our assumptions, we have

n−i ∼
∑
k 6=i

Bernoulli (pi,k) and n−ji ∼
∑

k/∈{j,i}
Bernoulli (pj,k) ,

where these Bernoulli distributions are independent, with success probabilities strictly less than
1.12 These distributions are also called Poisson Binomial distributions and have been extensively
studied in the literature. We will write X ∼ PB (p) with p = (p1, p2, . . . , pk) the vector of success
probabilities of each Bernoulli trial. This distribution, in some cases, can be well approximated by
a Poisson distribution.13 In this model, we have that n−i ∼ PB (Pi) and n−ji ∼ PB (P−j,i) where
Pi = (pi,k)k 6=i ∈ [0, 1]n−1 and P−j,i = (pj,k)k/∈{i,j} ∈ [0, 1]n−2. These random variables are useful
to write our approximation to financial centrality as

FCi ≈ F̂Ci := P (ζi = 1)×
[
1 + γE

(
1
nζ
| ζ
)]

= pi

1 + γziE
( 1

1 + n−i

)
+ γ

∑
j 6=i

zjE
(

1
2 + n−ji

) ,
where pi = P (ζi = 1). Therefore, we need to calculate the inverse moments E (1/(1 +X)) and
E (1/(2 +X)) for n Poisson Binomial random variables; X = n−i and X = n−ji for all j 6= i.
Hong (2013) provides a general survey on the commonly used methods to calculate explicitly the
probability function of Poisson Binomial distributions using either recursive or Discrete Fourier
Transform methods, which are fairly fast even with large n.14 We also survey results (starting
with Le Cam (1960)) that show that if the expected number of successes of a Poisson Binomial
distribution is sufficiently low (corresponding in this case with low expected market sizes), then it
can be well approximated by a Poisson distribution.15 In the context of this model, it means that
if E (n−i) = νi − 1 is small (relative to n), then we can approximate n−i ∼ Poisson (νi − 1) and
n−ji ∼ Poisson (ν−ji), where ν−ji = E (n−ji) =

∑
k/∈{i,j} pjk = νj − pji − 1.

IfX ∼ Poisson (ν − 1), then E (1 +X)−1 = m1 (ν) := [1− exp (1− ν)] / (ν − 1) and E (2 +X)−1 =
m2 (ν) := [1−m1 (ν)] / (ν − 1), both strictly decreasing functions of ν ≥ 1. Using these formulas,

12Exact and approximation methods for calculating expectations of market sizes are sensitive to the assumption of
interior (i.e., in (0, 1) ) success probabilities. This is the reason for the need to define the random variables n−i and
n−ji.
13Le Cam (1960) provided bounds on the error of approximation, which were improved by Stein (1986); Chen (1975),
and Barbour and Hall (1984); Sason (2013) show that if X̂ is the poisson approximation (with mean λ =

∑
i
pi, then

dTV
(
X, X̂

)
≤
(
1− e−λ

)∑
i
p2
i /λ, where dTV (·) denotes the total variation distance. This approximation will then

typically be valid when its expected value is not too large.
14Chen and Liu (1997) show stable (i.e. non-alternating) methods are O

(
n2), which would make the calculation of

financial centrality of a given agent be O
(
n3). Discrete Fourier Methods are usually much faster (Fernández and

Williams (2010)). See Hong (2013) for a general survey on the existing exact and approximating methods.
15This is not the only approximation studied in the literature. In models where the expected market size is high,
Gaussian approximations behave rather well (see Volkova (1996), Hong (2013)). If success probabilities are similar
(i.e., the variance σ2

p := n−1∑
i
(pi − p)2 is small enough) then approximation to a Binomial distribution is fairly

accurate (Ehm (1991); Barbour et al. (1992)).
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we can then approximate F̂Ci by:

F̂Ci ≈ pi ×

1 + γzim1 (νi) + γ
∑
j 6=i

zjm2 (νj − pj,i)

 .
This shows the following. First, nodes with a larger expected reach as measured by νi are more
central (as long as n is large enough relative to γ). Second, nodes that have larger expected inverse
room size when they are hosts are more central. Third, i is more central when pj,i increases,
particularly when νj is small. So when j tend to invite small rooms as hosts, but i is likely to be
in such a j’s room, then i is more valuable.

A special case are symmetric models, where zi = 1/n for all i and pi,j = pj,i (e.g., the model
pi,j = αδ(i,j), since distance is symmetric). In this case

FCi = 1
n
νi

1 + γ × 1
n
m1 (νi) + γ

∑
j 6=i

1
n
m2 (νj − pj,i)

 .
This has the advantage that the centrality of agent i depends solely on the expected market size of
each agent (as a host) that she gets connected to, and the probability that she connects to them.
The marginal value of the inverse room size effect when i is the host, proportional to νi ×m1 (νi),
declines in νi if and only if νi ≥ 2.79 (there is a positive effect in P (ζi = 1), but an offsetting
negative effect in m1 (νi) ).

If we want to calculate centrality exactly, we can still use the calculation of the exact pdf of
n−i and n−ji to get the exact financial centrality. For example, in the CARA-Normal model with
homogeneous preferences and independent and identically distributed income draws, we know that
FCi = Eζ {ζi exp (γ/nζ)}, which can be decomposed as

FCi = pi

ziE
[
exp

(
γ

1 + n−i

)]
+
∑
j 6=i

zjE
[
exp

(
γ

2 + n−ji

)]
and then be calculated explicitly using the distributions for n−i and n−ji.

D.2. Sequential Market Formation. In the Poisson models, for j 6= k 6= i, note that ζj ⊥ ζk

conditional on i hosting. But trading groups may be determined sequentially, along a chain of
meetings. In this case the study of random walks on graphs provides the right vocabulary to
capture this.

We can model this in a simple way, though the analytic characterization is hard to come by. Let
(zi)i∈I denote the probabilities that each node is the host, let (pij)i,j∈I denote the probability that
i meets j, and let β be the probability that at each stage the chain continues. With complementary
probability 1−β, the chain terminates exogenously. However, the chain also terminates if an agent
is revisited (and hence no new agents are added to the market).

This process, at termination, determines the size of the trading room. While it is easy to describe,
and easy to simulate, it is hard to analytically compute moments for the distribution of 1

nζ
(Aldous

and Fill, 2002; Durrett, 2007), even if chains are not terminated upon revisiting an agent. This is
because what matters is the number of distinct agents in the market, not just the number of steps
the chain makes (which, in that case, would simply follow a geometric random variable). In the



LIQUIDITY, FINANCIAL CENTRALITY AND THE VALUE OF KEY PLAYERS 43

special case with large n, zi = 1/n, β = 1 (no random exogenous termination) and pij = 1/di (i.e.,
uniform random walk, with equal probability among first degree neighbors) and g comes from an
Erdös-Renyi process, Tishby et al. (2017) get closed form expressions for the distribution of chain
length (or market size in our setup), showing that it follows a product of an exponential and a
Rayleigh distribution.16

D.3. Market Participation Shocks as Transaction Chains. Now we give an alternative inter-
pretation of the market participation shocks. Any market participation shock can be interpreted as
a realization of a chain of bilateral transactions among a subset of agents in the economy, which are
allowed to run short-run deficits. Formally, a simple transaction chain is a set of agents that can only
trade with adjacent agents. Namely, there is a set of agents J = {i1, i2, . . . , ik} ∈ I (which are se-
lected randomly), such that ij can trade only with agents ij−1 and ij+1, for j ∈ {0, 1, . . . , k} (except
for the first agent i1, who can only trade with i2, and the last member ik, who can only trade with
ik−1). Agent j can make or receive transfers T̂j,h ∈ R for h ∈ {j − 1, j + 1}, which might be such
that T̂j,h+yj < 0 (i.e., giving agent h more than the endowment she has at the moment of the trans-
action). If T̂j,h > 0 it means that j sends resources to agent h, while T̂j,h < 0 means that j receives
resources from k. The budget constraint that j faces is then Tj,j−1 + Tj−1,j + Tj,j+1 + Tj+1,j ≤ yj .
Defining Tj,h as net transfers instead of gross transfers, we then have that Tj,j+1 = −Tj+1,j . There-
fore, we can work only with the net transfers Tj = Tj,j+1 for agents j = 1, 2, . . . k − 1, and the
simplified budget constraint for each agent is

Tj ≤ yj + Tj−1

for every j = 1, . . . , k−1. There is a clearing house that, at the end of the day, settle all transactions.
That is, agents can have short run deficits, but at the end of the period, payments are settled
simultaneously, once all transactions are agreed upon. Without loss of generality, let’s assume
ij = j, so that C = {1, 2, . . . k}. A consumption profile of the agents in the chain C, is a description
of consumption amounts c = (c1, c2 . . . ck). A consumption allocation is feasible if and only if∑k
i=1 ci =

∑k
i=1 yi. We say that a consumption bundle is transfer-feasible if and only if it is feasible

and there exist transfers {Ti,j}ni=1 such that

(1) cj = yj + Tj−1 − Tj ≥ 0
(2)

∑k−1
j=1 (Tj−1 − Tj) = 0.

In order to be able to define this objects for all j, we set T1−1 = Tk,k+1 = 0. Therefore, for i = 1
we have c1 = y1 − T2 and for i = k ∈ {1, . . . n} we have ck = yk + Tk−1. For such a consumption
allocation, we say the sequence of net transfers {Tj} implements the allocation c. The (rather
obvious) result is that the set of feasible consumption profiles is equal to the set of transfer feasible
allocations. This then implies that by modeling the interactions among agents as trades as if
everyone was trading with each other is just an useful representation.

So, the basic assumptions in this environment are that (1) agents can only trade bilaterally
with adjacent agents (with a predetermined order) in the chain and (2) promises to pay (i.e., net
transfers) have to be settled jointly, after all trades have been agreed upon. This is the most

16This, of course, can be adapted by allowing β ∈ (0, 1).



LIQUIDITY, FINANCIAL CENTRALITY AND THE VALUE OF KEY PLAYERS 44

important assumption which abstracts away from leverage or run-away constraints (which would
limit the short-run deficits agents can have in any given moment). In Proposition D.1 we show
that, if we allow agents to run short-run deficits until the end of the day, when all transactions are
settled, then any feasible consumption allocation among k agents can be implemented by a trading
chain (in no particular order of agents).

Proposition D.1. Let c = (ci)i=ki=1 be a feasible consumption allocation (so
∑
i ci =

∑
i yi ). Then,

the net transfers Tj defined as

(D.2) Tj = Tj→j+1 :=
i=j∑
i=1

(yi − ci)

implement c. Moreover, the following gross transfers implement c

T̂j→j+1 = max {0, Tj} and T̂j+1→j = max {0,−Tj}

so either T̂j→j+1 = Tj > 0 and T̂j+1→j = 0, or T̂j→j+1 = 0 and T̂j+1→j = −Tj ≥ 0.

Proof of Proposition D.1. The fact that
∑k
j=1 (Tj−1 − Tj) comes from equation (D.2): we have

Tj−1 − Tj =
i=j−1∑
i=1

(yi − ci)−
i=j∑
i=1

(yi − ci) = cj − yj

and hence
k∑
j=1

(Tj−1 − Tj) =
k∑
j=1

(cj − yj) = 0

since c is feasible. The consumption attained for each agent is

ĉj = yj + Tj−1 − Tj = yj + (cj − yj) = cj

i.e., it achieves the target consumption allocation. �
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Appendix E. Decentralization as Arrow Debreu Economies

Proof of Proposition 4.3. We will focus on allocations where ci (s) > 0 for all s = (y, ζ) : ζi =
1 for simplicity. Since (4.2) is a convex optimization problem and u (·) is strictly concave and
differentiable, Kuhn-Tucker conditions are necessary and sufficient to characterize the optimum.
This is also true for the planner’s problem (3.1). Let µi > 0 be the Lagrange multiplier of the AD
budget constraint in (4.3) (this constraint will always be binding). The first order conditions of the
consumer problem with respect to ai (s) at states s = (y, ζ) : ζi = 1

(E.1) u′i [ci (s)] P (s) = µir (s) for all s : ζi = 1 where ci (s) = yi (s) + ai (s)

where ci (s) = yi (s)+ai (s). Also see that the choice of ai (s) is superfluous in the consumer’s prob-
lem if ci (s) = 0 for all s : ζi = 0, and that the budget constraint can be written as

∑
ζici (s) r (s) ≤∑

ζiyir (s). Hence c = (ci (s))i∈I,s∈S is a Walrasian Equilibrium with transfers allocation if
∃µi > 0∀i ∈ I such that conditions (E.1) and the resource constraint (3.2) are satisfied, and such
that ci (s) = yi for all s : ζi = 0. The corresponding Walrasian Equilibrium has ai (s) = ci (s)− yi,
r (s) = (1/µi)u′i [ci (s)] P (s) > 0 and τi =

∑
s ai (s) r (s) = (1/µi)Es {[ci (s)− yi]u′i [ci (s)]}.

Doing the same exercise for the planner’s problem (3.1) , we get that a consumption allocation
ci (s) solves the planner’s problem with Pareto weights λ ∈ ∆ if and only if it satisfies the resource
constraint (3.2) for all s ∈ S, ci (s) = yi for all s : ζi = 0 and all i ∈ I, and satisfies for all i ∈ I:

(E.2) λiu
′
i [ci (s)] = q (s) for all s : ζi = 1

where q (s) is the (normalized) Lagrange multiplier of the resource constraint at state s.
Therefore, a Walrasian Equilibrium with transfers consumption allocation c will also be the

solution to the planner’s problem (3.1) with Pareto weights λi = 1/µi. Likewise, for given λ ∈ ∆,
the solution to the planner’s problem (3.1) will be a Walrasian Equilibrium with transfers if we
take µi = 1/λi. Moreover, the implementing price function r (s) and transfers τi satisfy:

(E.3) r (s) = (1/µi)u′i [ci (s)] P (s) = q (s) P (s)

τi = Es {[ci (s)− yi] q (s)}

since 1/µi = λi. �

Of course, there is a mapping between a Walrasian Equilibrium without lump-sum transfers and
its corresponding utilitarian planner representation, with its Pareto weight vector λ. Two special
cases are of interest. In the benchmark case of the CARA-Normal model, assuming constrained
efficient allocations are implemented without lump sum transfers, we obtain a fixed point equation
mapping the primitives of the model (income distribution moments and preferences) to the Pareto
weights of the planner’s problem which we derive in Online Appendix G.

We also show that in the case where the planner has uniform Pareto weights (i.e., λi = 1/n for
all i), preferences are identical and shocks are i.i.d. Gaussian variables, then the planner’s problem
can be implemented by a Walrasian Equilibrium with no transfers with q (s) = exp

(
−ryζ

)
and

ci (s) = ζiyζ + (1− ζi) yi, where yζ := 1
nζ

∑
j∈I ζjyj is the mean income of agents in the market,
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and nζ :=
∑
j∈I ζj is the market size at state s. Moreover, the price of personalized debt is simply

FCi = Eζ
{
ζi exp

(
γ σ

2

2

)}
.

Appendix F. Extensions

In this section we study two extensions that depart from the class of environments above. One of
the most seemingly important restrictions on the models studied so far is the existence of centralized
markets. That is, agents either are in autarky or have market access and can trade with any other
agent that also has market access. While the bilateral trading chains introduced above relaxes
this interpretation, it maintains the possibility that any agent is reachable by any other through
a finite sequence of trades, as long as both have market access. In Section F.1 we introduce a
generalization of the basic environment, allowing for the existence of several segmented markets
working in parallel, where agents can only trade among a subset of all agents who have market
access. That is, a draw from the stochastic financial network consists of a collection of subgraphs
(cliques). For example ijkl and mnop may be two cliques of four who can exchange with each other
in some state of the world. But in another state of the world, perhaps the cliques are ij, kl, mno,
and p (a singleton). Each clique is a segmented market. We show that the basic definitions and
formulas of financial centrality still hold, if we reinterpret having “market access” to be present in
the market where the agent being injected with liquidity is trading at.

Another important assumption maintained throughout this paper is that the social planner
evaluating the marginal value of injected liquidity also is able to implement the allocation c (·)
that maximizes her expected utility. However, a relevant case is one where the planner can only
influence the economy by the liquidity injection policies and cannot directly choose the allocation
herself. This would be the case when the allocation is chosen according to some other solution
concept, like Walrasian Equilibrium, multi-player bargaining games, and so on. In such situations,
the social planner would have to take the consumption allocation as given when measuring the
marginal effects of injecting liquidity in this economy. In Section F.2 we study financial centrality
under the assumption that the consumption allocation is Pareto optimal, which implies that there
exist some representing social preferences (i.e., Pareto weights) for which it would be optimal. We
then obtain similar expressions for financial centrality, which now incorporates a term relating the
Pareto weights of the social planner with the representative Pareto weights of the allocation.

F.1. Segmented Markets. We consider an environment with the same income shocks and pref-
erences, but one where agents may gain access to random, segmented markets. Formally, a market
segmentation is a partition π = {m1,m2, . . .mr} over the set of agents I; i.e., ∪m∈πm = I and
m ∩m′ = ∅ for all m 6= m′. In this alternative environment, the relevant state of nature is now
s = (y, π), where π is the market segmentation state, with probability distribution P (s) . We refer
to each m ∈ π as a market at state s. Let P be the set of all partitions of I that have positive
probability under P (s). We denote m (i, π) ∈ π to be the market (at segmentation π) where i is
able to trade. If m (i, π) = {i}, we say i is in autarky at π, and otherwise we say i has market
access at π.

Segmented markets now modify the definition of feasibility of allocations. We say that an
allocation c = (ci (s))i∈I is feasible if and only if, for all s = (y, π) and all m ∈ π we have
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i∈m ci (s) ≤

∑
i∈m yi. Clearly, the class of environments embeds the single market environments

studied before—i.e., markets where any partition π in the support is made up of a single multi-agent
market mu (π) ⊆ I with |mu (π)| ≥ 1, and everyone else being in autarky. Hence we can summarize
the state by s = (y, ζ) where ζi = 1 if and only if i ∈ mu (π). In general, for a given partition π we
write ζmi ∈ {0, 1} for the indicator of whether i has access to market m.

Given Pareto weights λ ∈ ∆n and agent i ∈ I, the planner’s problem value function of in-
jecting liquidity ti ≥ 0 to agent i is V s (ti) := max(cj(y,π))j∈I Es

{∑
j∈I λjuj [cj (s)]

}
subject to∑

j∈m cj (s) ≤
∑
j∈m yj + tiζ

m
i for all s = (y, π) and all m ∈ π. Financial centrality is now defined

as before. Intuitively, a planner needs to integrate also over all possible market segmentations in
order to assess the marginal value of the liquidity injection policy for agent i, since the shadow
value of the injection will depend on the market agent i is trading at. We show that the financial
centrality measure follows the same formula as in the centralized markets environments, in a “vir-
tual single market economy” where having market access is understood as being able to trade with
the agent of interest.

Definition F.1. Take a segmented market economy E , with distribution over states P (y, π).
Define Ei to be a virtual single market economy where all agents have identical preferences over
consumption, and the distribution over outcomes P̃ (y, ζ) is given by:

(F.1) P̃ (y, ζ) = P

(y, π) ∈ Y × P :

(1) : j ∈ m (i, π) for all j : ζj = 1 and

(2) : #m (i, π) > 1

 ,
i.e., an agent j 6= i has market access on economy Ei only when she is able to trade (i.e., in the
same market) with agent i in E .

Proposition F.1 asserts that financial centrality in a segmented markets economy follows the
same “asset pricing formula” we had in Proposition A.3, but on the virtual single market economy
Ei. The proof is quite straightforward, and simply generalizes the proof of Proposition A.3 and is
therefore omitted.

Proposition F.1. Suppose y ⊥ π. Let E be a segmented markets economy and i ∈ I. Then, for
any λ ∈ ∆, the financial centrality for agent i coincides with the financial centrality of agent i in
the virtual single market economy Ei. That is,

FCi := ∂V s (t)
∂ti

|t=0= EP̃
s=(y,ζ) {ζiq (s)}

where EP̃ (·) is the expectation taken w.r.t measure P̃ defined in F.1.

Intuitively, financial centrality only deals with the effect of the increase in agent i’s endowment,
which can only impact those agents who can trade with her. Because of separability of the plan-
ner’s preferences over different agents consumptions, the marginal welfare effect on the segmented
markets i is trading on have no effect on the welfare evaluation of other segmented markets at the
same time. Therefore, whether agents not trading with i are either trading among themselves, or in
autarky, is irrelevant when evaluating the policy. Moreover, any two states which generate the same
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segmented market for agent i are equivalent from the point of view of the planner when evaluating
this policy. This result is easily generalized for endogenous market participation economies.

F.2. Passive Planners. In this section, we consider the original environment, but assume the
consumption allocation is a primitive of the model (e.g., being determined by a Walrasian Equi-
librium or a bargaining protocol). In this setup, the social planner can only influence the allo-
cation by making the proposed liquidity injections. If the social planer has preferences given by
V = E [

∑
λiui (ci)], and agents consume according to a (differentiable) allocation c (·), financial

centrality is defined as

FCi = Es

ζi ∑
j:ζj=1

λju
′
j [cj (s)] ∂cj

∂yi
(s)

 .
An important case is where c (·) is a (constrained) Pareto optimal allocation; i.e., there exists a

representing Pareto weight vector ϕ such that c (·) solves problem (3.1) with ϕ instead of λ. Also,
let q (s) be the usual normalized Lagrange multiplier of the resource constraint at state s, for this
ϕ− planner problem. It is easy to show (see below) that financial centrality in this setting is

(F.2) FCi = Es

ζiq (s)

 ∑
j:ζj=1

ρj
∂cj (s)
∂yi

 ,
where ρj := λj/ϕj

17.
A special case is when the consumption allocation satisfies ∂cj/∂yi = n−1

ζ whenever ζj = ζi = 1.
This is the case in the CARA model with homogeneous preferences, even if income draws are not
normal (see below). Whenever this happens, equation F.2 can be simplified to

FCi = Es {ζiq (s)× ρ̄ζ} ,

where ρζ = n−1
ζ

∑
ζjρj is the arithmetic mean of the Pareto weights ratio, and q (s) is the Lagrange

multiplier in the Pareto problem with weights ϕ. In the CARA-Normal model this then translates
into

FCi = Eζ

{
ζiϕζ exp

(
−rµζ

)
exp

(
r2

2
σ2
ζ

nζ

)
× ρζ

}
,

which is the same formula as before, but with an extra term, ρζ := n−1
ζ

∑
ζj (λj/ϕj) which

is the mean of relative Pareto weights. Another important case where ∂cj/∂yi = n−1
ζ is an

environment where agents have homogeneous preferences and identical and independently dis-
tributed random draws. If the allocation comes from a Walrasian equilibrium, we know that
the representing Pareto weight is ϕj = 1 for all j (see Proposition G.2), and therefore FCi =
exp (−rµ)Eζ

{
ζi exp

(
r2

2
σ2

nζ

)
× λζ

}
, where λζ := n−1

ζ

∑
ζjλi is now the mean of the Pareto weight

of the social planner. In the baseline case of with homogeneous preferences, i.i.d. income draws
and a representing Pareto weight ϕj = 1 for all j (so ci = y if ζi = 1) we can approximate the cen-
trality measure to FCi ≈ Eζ

{
ζi
(
1 + γ σ

2

nζ

)
λζ
}
, which resembles the centrality measure obtained

in Subsection G for CES and CARA preferences.
17Of course, when λ = ϕ we have ρj = 1 for all j, and since

∑
j:ζj =1 ∂cj (s) /∂yi = 1 for all s : ζi = 1, we recover the

usual formula in this case.
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Proof. First, we want to show equation F.2. For that, we use again the first order conditions
of planner’s problem 3.1 but representing Pareto weights ϕ ≥ 0: ϕju

′
j (cj (s)) = q (s) ⇐⇒

λju
′
j (cj (s)) = ρjq (s) where ρj = λj/ϕj . Using this in the original definition of centrality in

this setup, we get

FCi = Eζ

ζi ∑
j:ζj=1

λju
′ (cj (s)) ∂cj (s)

∂yi

 = Eζ

ζi ∑
j:ζj=1

ρjq (s) ∂cj (s)
∂yi


= Eζ

ζiq (s)
∑
j:ζj=1

ρj
∂cj (s)
∂yi

 ,
showing the desired result. Also, because the resource constraint is always binding at every
state s, we have the identity

∑
j:ζj=1 cj (s) =

∑
j:ζj=1 yj , which at states s : ζi = 1 implies that∑

j:ζj=1 ∂cj (s) /∂yi = 1. Therefore, if λ = ϕ, then ρj = 1∀j, q (s) is the multiplier for the Pareto
problem with Pareto weights λ = ϕ and hence, FCi = {ζiq (s)} , like we had above. �

We now study the special case of the CARA-Normal model with homogeneous preferences and
a representing Pareto weight vector ϕ. We know (see Online Appendix G) that in this model,
cj (s) = r−1 ln

(
ϕj/ϕζ

)
+ y, where ϕζ = exp

(
n−1
ζ

∑
ζj lnϕj

)
. This then means that whenever

ζi = ζj = 1, we have ∂cj (s) /∂yi = n−1
ζ . Moreover, we also showed that in this environment,

q (s) = ϕζ exp (−ry). Therefore, using F.2 we get FCi = Es
{
ζiϕζ exp (−ry)× ρζ

}
, where now

ρζ := n−1
ζ

∑
ζjρj is the arithmetic mean of relative Pareto weights. Using the assumption y ⊥ ζ,

we can then rewrite it as

Es

{
ζiϕζ exp

(
−rµζ

)
exp

(
γ
σ2
ζ

nζ

)
× ρζ

}
.
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Appendix G. Walrasian Equilibrium without Transfers

Following the definitions in Subsection E, and given a (normalized) price function r ∈ ∆ (S), we
can simplify the consumer’s problem by just choosing consumption to maximize utility, given only
one “expected” budget constraint. Formally, agent i ∈ {1, . . . , n} solves

(G.1) Vi (q) := maxEs {ζiui [ci (s)] + (1− ζi)ui (yi)}

subject to: Es [ζici (s) r (s)] ≤ Es [ζiyir (s)] .

As we did when defining the Lagrange multipliers for the planning problem, we normalize the
price function as q (s) P (s) = q̂ (s), where q̂ is the actual price measure. A Walrasian equilibrium
is a pair (c, q) =

(
{ci (s)}i∈I,s∈S , {q (s)}s∈S

)
such that

• {ci (s)}s∈S solves (G.1) given prices q (s)
• and markets clear at all states:

∑
i ζici (s) ≤

∑
i ζiyi. for all s = (y, ζ).

Proposition 4.3 implies there exists a vector λ such that the equilibrium allocation solves the
planning problem (3.1), and such that the normalized prices satisfy r (s) = q (s), where q (s)
are the normalized Lagrange multipliers of the resource constraint at state s. Following Negishi
(1960) and more recently Echenique and Wierman (2012), we can then solve for the equilibrium
allocation by finding the Pareto weights that satisfy the budget constraints for all agents. Formally,
let c∗i (s | λ) be the optimal consumption allocation in the planning problem with weights λ, and
q∗ (s | λ) the Lagrange multipliers (normalized by the probabilities of each state). Then, a Pareto
weight vector λ corresponds to a Walrasian equilibrium allocation if and only if

(G.2) Es [ζic∗i (s | λ) q∗ (s | λ)] = Eζ [ζiyiq∗ (s | λ)] for all i = 1, 2 . . . , n.

The next proposition characterizes the Pareto weights equation for the CARA-Normal case.

Proposition G.1. Suppose ui (c) = −r−1
i exp (−ric) and y ∼ N (µ,Σ). Let rζ :=

(
1
nζ

∑
ζir
−1
i

)−1

be the harmonic mean of risk aversion in market ζ, and λζ := exp
[

1
nζ

∑
i ζi (rζ/ri) ln (λi)

]
be the

average Pareto weight in the market, weighted by the relative risk aversion. Also, let Σi,ζ :=
∑
j ζjσij

Then the Pareto weight vector λ solving (G.2) satisfies

(G.3) ln (λi) =
Eζ
{
ζi
[
ln
(
λζ
)

+
(
riµi − rζµζ

)
− rζ

nζ

(
riΣi,ζ − rζσ2

ζ

)]
η (s)

}
Eζ {ζiη (s)}

for i = 1, . . . , n, where η (s) := λζ exp
(
−rζµζ + r2

ζ

2
σ2
ζ

nζ

)
.

Proof. From the first order conditions under CARA preferences, we get

(G.4) λi exp (−rici) = q (s) ⇐⇒ ci = 1
ri

ln (λi)−
1
ri

ln (q (s))

and that
q (s) = λζ exp (−rζy) = λζ exp (−rζy) .
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Using the first order conditions again, whenever ζi = 1 we get

(G.5) ci (s) =
ln
(
λi/λζ

)
ri

+ rζ
ri
y (s) .

Then, the value of the consumption allocation, at prices q (s) is

Es {ζic (s) q (s)} = Es
[
ζi

ln (λi)
ri

q (s)
]
− Es

ζi ln
(
λζ
)

ri
q (s)

+ Es
{
ζi
rζ
ri
y (s) q (s)

}

= 1
ri

ln (λi)FCi (λ)− 1
ri
Es
{
ζiλζ

[
ln
(
λζ
)

+ rζy
]

exp (−rζy)
}

where Ey (−rζy) = exp
(
−rζµζ + rζ

2
σζ
nζ

)
as we have seen before. Moreover

Es [rζy exp (−rζy)] = Eζ

[(
rζµζ −

r2
ζ

nζ
σ2
ζ

)
exp

(
−rζµζ +

r2
ζ

2
σ2

nζ

)]
.

On the other hand, the value of agent i’ s income stream is

wi = Eζ [ζiyiq (s)] = Es
{
ζiλζyi exp [−rζy (s)]

}
.

Using the moment generating functionMy (t) = Ey [exp (t′y)] = exp
(
t′µ+ 1

2 t
′Σt
)
, we get E

[
yi exp

(
−rζyζ

)]
=

∂M
∂ti
|
t=−

yζ
nζ
×1

where 1 is a vector of 1’s, so that t′y = rζy. This then implies that Ey [yi exp (−rζy)] =(
µi −

rζ
nζ

Σi,ζ

)
exp

(
−rζµζ + rζ

2nζ σ
2
ζ

)
, where Σi,ζ :=

∑
j ζjσij . Putting all these results together, we

can write the budget constraint as

Es [ζi (ci − yi) q (s)] = 0

if and only if

r−1
i ln (λi)FCi (λ)− r−1

i Eζ

{
ζiλζ

[
ln
(
λζ
)
− rζµζ +

r2
ζ

nζ
σ2
ζ

]
exp

(
−rζµζ +

r2
ζ

2nζ
σ2
ζ

)}

= Eζ

{
ζiλζ

(
µi −

rζ
nζ

Σi,ζ

)
exp

(
−rζµζ +

r2
ζ

2nζ
σ2
ζ

)}
and so

ln (λi)FCi (λ) = Eζ

{
ζiλζ

[
ln
(
λζ
)

+
(
riµi − rζµζ

)
− rζ
nζ

(
riΣi,ζ − r2

ζσ
2
ζ

)]
exp

(
−rζµζ +

r2
ζ

2nζ
σ2
ζ

)}
.

�

Observe that the denominator has Eζ {ζiη (s)} = FCi. Also, because λ ∈ ∆n, we have ln (λi) and
ln
(
λζ
)
< 0, which implies that if we could, somehow, increase FCi without affecting the numerator

of the right hand side of (G.3), we would increase λi in the fixed point equation. An important
corollary of Proposition G.1 is the proof of Proposition A.1, since we would have rζ = ri = r for all
ζ, and the fact that incomes are identically distributed and independent imply σ2

ζ = σ2 , µζ = µ
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and Σi,ζ = σ2. This simplifies the fixed point equation as

ln (λi)FCi (λ) = Eζ

{
ζiλζ ln

(
λζ
)

exp
(
−rµ+ r2

2
σ2

nζ

)}
to which a solution is λi = 1/n. We summarize this result in Proposition G.2.

Proposition G.2. Suppose ui (c) = −r−1 exp (−rc) and yi ∼i.i.d. N
(
µ, σ2). Then λi = 1/n ∀i

solves G.2, and hence FCi (λ) = exp (−rµ)Eζ
{
ζi exp

(
r2

2
σ2

nζ

)}
.

Appendix H. Economy with Portfolio Investments

H.1. Setup. We study the model in Section B.2, in the case with normally distributed returns and
CARA preferences. The timing of the environment is as follows:

(1) Endowment vector is drawn according to e ∼ N (µe,Σe),
(2) Agents choose portfolio investments wi ∈ RK ,
(3) Returns are drawn: R ∼ N (ρ,Λ) and income is determined as yi = ei + w′iR.

We will assume that the realization of the endowment ei is privately observed by agents at the
moment of deciding the investment portfolio wi. We will show that this will not affect the decision;
i.e. ,wi (ei) = wi for all ei ∈ R

To set up the problem, remember that given the efficient Pareto optimal consumption allocation,
agents will consume according to

ci (s) =

ai + ηζ,iyζ if ζi = 1

yi if ζi = 0

where ai := ln
(
λζ/λi

)
/ri and ηi := rζ/ri. To simplify exposition, we will assume that λi = 1 for

all i (this will not change the results in any way, as we will see) so ai = 0 for all i. Also, since
there are no strategic interaction between the agents’ portfolio decisions, the planner would always
choose to maximize ex-post welfare; i.e. for any profile of portfolio decisions w = (w1, . . . , wn).

For a given realization of portfolio returns R, then aggregate tradable income given (ζ,R) is

Y (ζ,R) =
n∑
i=1

ζi (yi + ti) = ηζ
(
eζ + tζ + w′ζR

)
where eζ := n−1

ζ

∑n
i=1 ζiyi, tζ = n−1

ζ

∑n
i=1 ζiti and wζ := n−1

ζ

∑n
i=1 ζiwi respectively. This means

that, conditional on ζi = 1, the first and second moments of individual consumption are:

E (ci | e, ζ) = ηζ,i
(
eζ + tζ + w′ζρ

)
and its variance:

var (ci | e, ζ) = η2
ζ,iw

T
ζ Λwζ

which then means that, conditional on (e, ζ) (with ζi = 1) we have that ci ∼ N
(
ηζ,i

(
eζ + tζ + wTζ ρ

)
, η2
ζ,iw

T
ζ Λwζ

)
.

This then means that expected utility for agent i (conditional on having market access) can be writ-
ten as

E [u (ci) | e, ζ] = −r−1
i exp

(
−riηζ,i

(
eζ + tζ + wTζ ρ

)
+ r2

i

2 η
2
ζ,iw

T
ζ Λwζ

)
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and using the fact that ηζ,i = rζ/ri we can simplify it to

E [u (ci) | e, ζ] = −r−1
i exp

(
−rζ

(
eζ + tζ + wTζ ρ

)
+
r2
ζ

2 w
′
ζΛwζ

)
and if, instead we have ζi = 0, then

E [u (ci) | e, ζ] = −r−1
i exp

(
−ri

(
ei + wTi ρ

)
+ r2

i

2 w
′
iΛwi

)
H.2. Equilibrium. We look for Bayesian Nash equilibria of the simultaneous move game where
agents, taking the investment strategy wj (ej) as given, decide optimally on their portfolio decisions.
Formally, a profile of investment functions wi : R→ RK is a Bayesian Nash Equilibrium (BNE) if,
for all agents and all ei ∈ R we have that

wi (ei) ∈ argmax
wi∈Rk

Ee,R,ζ [ui (ci) | wj (·)]

We get the following result:

Proposition H.1. There exists a BNE of the investment game where wi (ei) = (riΛ)−1 ρ for all ei

Proof. To prove this statement, we first write the first order conditions of the investment problem
for agent i. The agent chooses wi to solve∑

ζ:ζi=1
ζi
∂E [ui (ci) | e, ζ]

∂wi
P (ζ) + (1− pi)

∂E [ui (ci) | e, ζi = 0]
∂wi

= 0

See that
∂E [ui (ci) | e, ζ]

∂wi
= ∂E [u (ci) | e, ζ]

∂wζ
× ∂wζ
∂wi

=

= n−1
ζ

∂E [u (ci) | e, ζ]
∂wζ

and, with some algebra, we can show that
∂E [ui (ci) | e, ζ]

∂wζ
=

= −ηζ,i exp
[
−rζ

(
eζ + tζ + wTζ ρ

)
+
r2
ζ

2 w
′
ζΛwζ

]
× (rζΛwζ − ρ)

Analogously, we can show that

∂E [ui (ci) | e, ζi = 0]
∂wi

= −ηζ,i exp
[
−ri

(
ei + wTi ρ

)
+ r2

i

2 w
′
iΛwi

]
× (riΛwi − ρ)

It is easy to check that if wj = (rjΛ)−1 ρ then wi = (riΛ)−1 ρ maximizes the agents expected
utility, for any realization of e �

H.3. Income correlation Caused by Portfolio Choices. Take the version where e is privately
observed. We can use the above results to show that the resulting income distribution will actually
give positively correlated incomes. The intuitive reason for this is the same as in Jackson and
Pernoud (2019): agents have access to the same set of investment opportunities. Even with het-
erogeneous preferences, they still are risk averse, and therefore their investments will be positively
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correlated, which will be translated into a positive correlation of incomes, even if the underlying
endowment process is not.

For this, we simply take the equilibrium portfolio decision for each agent, which gives that
yi = ei + r−1

i ρ′Λ−1R. This then means that its conditional covariances are

cov (yi, yj | e) = ER
{[
r−1
i ρ′Λ−1 (R− ρ)

]
×
[
r−1
j ρ′Λ−1 (R− ρ)

]}
=

= (rirj)−1 ρ′Λ−1ER
[
(R− ρ) (R− ρ)′

]
Λ−1ρ =

= (rirj)−1 ρ′Λ−1ρ

See that since Λ is positive definite and ri, rj > 0 we have that cov (yi, yj | e) > 0. This result
is independent of the assumption of endowments being independent. since then we can write the
covariance between yi and yj as

cov (yi, yj) = (rirj)−1 ρ′Λ−1ρ+ cov (ei, ej)

so, even if endowments are independent (i.e., cov (ei, ej) = 0 ) then incomes would be correlated
because of their similar portfolio decisions. This is relevant in our model, because we know that
the value of a liquidity injection is increasing in the average cross-correlations of income draws.
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